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Hematopoiesis is a paradigm of cellular differentiation that is 
highly coordinated to ensure balanced proportions of mature 
blood cells1. Despite a sophisticated understanding gained 

primarily from model organisms, many aspects of this process 
remain poorly understood in humans. At the population level, there 
is substantial variation in commonly measured blood cell traits, 
such as hemoglobin levels and specific blood cell counts, which can 
manifest as diseases at extreme ends of the spectrum2. Identifying 
genetic variants that drive these differences in blood cell traits in 
human populations may reveal regulatory mechanisms and genes 
critical for blood cell production and hematological diseases.

To these ends, genome-wide association studies (GWAS) have 
identified thousands of genomic loci linked to complex phenotypes, 
including blood cell traits3, but a major challenge has been the iden-
tification of causal genetic variants and relevant cell types underlying 
the observed associations4. In particular, linkage disequilibrium (LD) 
has confounded the precise identification of functional variants. In 
an effort to address these issues, several analytical approaches have 
been developed. The first, termed genetic fine-mapping, attempts to 
resolve trait-associated loci to likely causal variants by modeling LD 
structure and the strength of associations. In practice, a major limita-
tion has been the computational burden imposed when allowing for 
multiple causal variants and methods that assume exactly one causal 
variant per locus are thus most commonly used5,6, despite strong evi-
dence that many loci contain multiple independent associations7–10.

The second suite of approaches focus instead on identifying 
functional tissue enrichments. It has been well established that ~80–
90% of associated loci do not tag coding variants and that ~40–80% 
of the narrow-sense heritability for many complex traits can be 
resolved to genomic regulatory regions11,12. Given this observation, 
tissue-specific measurements of regulatory-element activity are 
often overlapped with significant loci (for example, in epigenomic 
fine-mapping) or with polygenic signal from millions of variants 
(for example, in partitioned heritability) to identify the variants and 
cell types most likely to underlie the measured trait or disease11,13. 
These enrichment methods have identified causal tissues for dis-
eases, including pancreatic islets for diabetes13 and central nervous 
system cells for schizophrenia11, but are only beginning to be applied 
to highly related traits and cell types within single systems such as 
the hematopoietic hierarchy.

To gain insights into hematopoietic lineage commitment and 
differentiation, we performed GWAS and genetic fine-mapping for 
16 blood cell traits on individuals from the UK Biobank (UKB)3, 
identifying multiple likely causal variants in hundreds of individual 
regions. We comprehensively annotated fine-mapped variants and 
identified high-confidence molecular mechanisms and putative 
target genes at scale. This allowed us not only to gain insights into 
patterns of developmental regulation but also to learn about the 
pleiotropic regulatory processes underlying blood cell production 
and maintenance. Finally, we describe and validate a new method 
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(g-chromVAR) to discriminate between closely related cell types 
in an effort to identify relevant stages of hematopoiesis that are 
affected by these common genetic variants. Applying g-chromVAR 
to data from single hematopoietic cells revealed substantial hetero-
geneity of genetic enrichment within classically defined hemato-
poietic progenitor populations. Thus, we demonstrate that using a 
well-powered method to identify trait-relevant cell populations pro-
vides a critical step toward broadly deciphering causal mechanisms 
underlying phenotypic variation.

Results
Fine-mapping pinpoints hundreds of likely causal variants. We 
performed GWAS on ~115,000 individuals from the UKB for 16 
blood cell traits representing seven distinct hematopoietic lineages 
(erythroid, platelet, lymphocyte, monocyte, and granulocyte (neu-
trophil, eosinophil, and basophil)) (Fig. 1a). Similarly to previous 
reports, these traits were highly heritable, with common genetic 
variants explaining an average of 15.4% of narrow-sense heritability 
(hg

2)14 (Supplementary Fig. 1). Traits from the same lineage typically 
had high genetic correlations, such as red blood cell (RBC) count and 
hemoglobin (rg = 0.89, P = 7.1 × 10–25), whereas traits from distinct 
lineages had low genetic correlations, with some exceptions such 
as platelet count and lymphocyte count (rg = 0.26, P = 3.8 × 10–18)  
(Supplementary Fig. 1). This suggests that genetic regulation of 
blood production could potentially occur across various stages of 
hematopoiesis.

To begin to dissect the nature and stage specificity of these 
genetic effects, we performed genetic fine-mapping to identify 
high-confidence variants across 2,056 3-Mb regions containing a 
genome-wide-significant association. Traditional fine-mapping 
approaches assume only one causal variant per locus and either are 
agnostic to LD or use small reference panels, which are inaccurate 
when scaled to large sample sizes15. To overcome these limitations, 
we calculated LD directly from the imputed genotype probabilities 
(dosages) for individuals in our GWAS, rather than from a hard-
called reference panel (Fig. 1b).

Across all common variants (minor allele frequency (MAF) > 0.1%, 
INFO16 > 0.6) in 2,056 regions, our method identified 38,654 variants 
with >1% posterior probability (PP) of being causal for a trait asso-
ciation, representing a substantial proportion of the narrow-sense 
heritability explained by all common variants (trait average of 24.9% 
of the common variant hg

2 for PP > 0.01) (Supplementary Fig. 1  
and Supplementary Table 1). 993 regions (48%) contained at least one 
variant with PP > 0.50 (Fig. 1c), providing strong evidence that our 
approach was successful in pinpointing causal variants. The posterior 
expected number of independent causal variants was greater than two 
for 35% of regions and greater than three for 13% of regions (Fig. 1d).  
Given their increased complexity, regions with a greater expected 
number of causal variants had lower top-configuration posterior 
probabilities (Supplementary Fig. 2 and Supplementary Table 2).  
The majority of variants (74%) with PP > 0.75 had MAF > 5% (Fig. 1e),  
consistent with the known polygenic nature of blood cell traits3. 
Fine-mapped variants had potentially diverse mechanisms, rang-
ing from putative regulatory variants in accessible chromatin to 
coding variants, including 164 unique missense variants and 6 loss-
of-function variants with PP > 0.10 (Fig. 1f, Supplementary Fig. 3,  
and Supplementary Table 3).

To validate our approach, we investigated the overlap of fine-
mapped variants (binned by posterior probability) with several 
annotations previously shown to be enriched for GWAS signals 
(Fig. 1g)11,12. To generate a null distribution, we locally shifted 
annotations within a 3-Mb window, similarly to the method imple-
mented in GoShifter17. We observed minimal enrichment for 
intronic regions and UTRs of genes, but found strong, focal, and 
stepwise enrichments across bins with higher posterior probabili-
ties for hematopoietic accessible chromatin, promoters, and coding 

regions (odds ratio (OR) = 4.2, 2.9, and 8.5 for PP > 0.75, respec-
tively) (Fig. 1f)11,12,17. Notably, strong enrichments persisted even 
after we excluded all variants with high correlation (r2 > 0.8) to the 
sentinel variants at each locus (Supplementary Fig. 3).

Dissecting mechanisms of core gene regulation in hematopoi-
esis. We next sought to delineate the precise mechanisms under-
lying the effects of fine-mapped genetic variants on hematopoietic 
traits. For all 140,739 variants with PP > 0.001, we combined several 
lines of functional and predictive evidence to better understand (i) 
the cell populations, (ii) the molecular mechanisms, and (iii) the 
target genes involved in blood cell production (Supplementary 
Fig. 4). First, we identified fine-mapped (PP > 0.10) nonsynony-
mous and loss-of-function coding variants in genes associated with 
RBC (77 genes), platelet (59), monocyte (20), lymphocyte (28), 
and granulocyte (neutrophil, basophil, and eosinophil; 46) traits 
(Supplementary Table 3). Within the set of genes identified from 
variants associated with RBC traits, we found both validated GWAS 
genes (SH2B3 (ref. 18) and TRIM58 (ref. 19) (Supplementary Fig. 5) 
and several genes linked to diverse Mendelian disorders involv-
ing RBCs (HFE, TMPRSS6, PFKM, PKLR, PIEZO1, SPTA1, ANK1, 
RHD, GYPA, and KLF1)20. Genes perturbed by fine-mapped coding 
variants were enriched for known and novel trait-relevant biologi-
cal pathways. For example, genes associated with RBC traits were 
involved in iron homeostasis, genes for platelet traits were involved 
in coagulation and wound healing, genes for lymphocyte traits were 
involved in T cell migration and activation, and genes for monocyte 
and granulocyte traits were involved in cytokine and inflammatory 
responses (Supplementary Fig. 6 and Supplementary Table 3). Of 
note, we identified several pathways corresponding to cholesterol 
and lipid regulation that were enriched in genes linked to RBC 
traits (Supplementary Fig. 6), suggesting a connection between lipid 
metabolism and RBCs, which are major stores of cholesterol21.

To investigate the exact stages of hematopoietic differentiation 
during which variants could regulate transcription, we overlapped 
fine-mapped variants (PP > 0.10) with chromatin accessibility pro-
files (ATAC-seq) for 18 hematopoietic progenitor, precursor, and 
differentiated cell populations primarily sorted from the bone mar-
row or blood of healthy donors (Fig. 1a, Supplementary Fig. 7, and 
Supplementary Table 4). Across traits representing the five major 
blood cell lineages, we used k-means clustering to categorize the 
developmental timing of accessible chromatin peaks containing 
fine-mapped variants (Fig. 2a,b and Supplementary Fig. 8). For 
example, across RBC traits, we identified 80 fine-mapped regula-
tory variants, of which 26% (21/80) were restricted to erythroid pro-
genitors, 18% (14/80) were restricted to megakaryocyte–erythroid 
progenitors (MEPs) and erythroid progenitors, and 29% (23/80) 
could regulate transcription across the entire erythroid lineage from 
hematopoietic stem cells (HSCs) to erythroid progenitors, whereas 
14% (11/80) could only act in other hematopoietic lineages (Fig. 2a).  
In some cases, we identified small clusters of variants that fol-
lowed slightly different regulatory programs, such as variants that 
could only regulate transcription in upstream multipotent pro-
genitors and variants associated with lymphocyte count that could 
regulate transcription in T cell, but not B cell, subsets (Fig. 2a,b  
and Supplementary Fig. 8).

Next, we investigated the molecular mechanisms underlying 
fine-mapped regulatory variants. To nominate a high-confidence 
molecular mechanism, we required that a variant (i) disrupt one of 
426 motifs corresponding to known binding preferences for human 
transcription factors22 and (ii) show occupancy by the correspond-
ing transcription factor in a relevant primary hematopoietic tissue 
or hematopoietic cell line, on the basis of 2,115 uniformly processed 
ChIP-seq profiles23. In total, we identified one or more such mecha-
nisms for 145 distinct fine-mapped noncoding variants (Fig. 2c).  
Specifically, we identified 13 RBC, 28 platelet, 8 monocyte, 11 lym-
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Fine map 2,056 GWAS regions (3 Mb)
allowing multiple ‘causal’ signals

GWAS on UKB (~115,000) for 16 blood cell traits
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Fig. 1 | Overview of hematopoiesis, UKB GWAS, and fine-mapping. a, Schematic of the human hematopoietic hierarchy showing the primary cell types 
analyzed in this work. Colors used in this schematic are consistent throughout all figures; mono, monocyte; gran, granulocyte; ery, erythroid; mega, 
megakaryocyte; CD4, CD4+ T cell; CD8, CD8+ T cell; B, B cell; NK, natural killer cell; mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; MPP, 
multipotent progenitor; LMPP, lymphoid-primed multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid progenitor; GMP, 
granulocyte–macrophage progenitor; MEP, megakaryocyte–erythroid progenitor. The 16 blood traits that were genetically fine-mapped are shown below 
the hierarchy; WBC, white blood cell; MPV, mean platelet volume; MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; 
MCH, mean corpuscular hemoglobin. b, Schematic of the UKB GWAS and fine-mapping approach. Briefly, blood traits for ~115,000 individuals were 
fine-mapped, allowing for multiple causal variants and using imputed genotype dosages as the reference for LD. c, Number of fine-mapped regions for 
each trait; the highest posterior probability of a variant being causal is indicated. d, Breakdown of the number of causal variants (min = 1, max = 5) for all 
regions in each trait. e, Empirical distribution of the MAF of variants in each posterior probability bin. f, Proportion of fine-mapped variants within intronic, 
promoter, coding, UTR, and intergenic regions. g, Local-shifting enrichments of fine-mapped variants across all traits for varying posterior probability bins. 
AC, accessible chromatin.
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erythroid-specific accessible chromatin (d). e, Luciferase reporter assays (n = 9 biological replicates) for four haplotypes (left) corroborate independent additive 
effects for rs9349205 (red; two-sided Wald test P = 1.78 × 10−3) and rs112233623 (blue; two-sided Wald test P = 2.86 × 10−6) on RBC count (right). a.u., arbitrary 
units. f,g, Regional association plots (n = 116,666 individuals, BOLT-LMM P values) for platelet count in the AK3 locus from the initial GWAS (f) and after 
conditioning on the sentinel variant, rs12005199 (g). h,i, Fine-mapping identifies two putative causal variants (rs12005199, PP = 0.99; rs409950, PP = 0.99) 123 
bp apart (h), both located within a strong megakaryocyte-specific accessible chromatin region (i). j, Luciferase reporter assays (n = 9 biological replicates) for 
four haplotypes (left) corroborate independent additive effects for rs12005199 (red; two-sided Wald test, P = 5.19 × 10−4) and rs409950 (blue; two-sided Wald 
test, P = 3.57 × 10−5) on platelet count (right). In e and j, mean and standard error are shown for both phenotype and regulatory activity.
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phocyte, and 18 granulocyte high-confidence molecular mechanisms 
for variants also in accessible chromatin in primary hematopoietic 
tissue (Fig. 2a,b, Supplementary Fig. 8, and Supplementary Table 5).  
These variants most commonly disrupted the binding sites of key 
transcriptional regulators of hematopoietic lineage commitment 
and differentiation (false-discovery rate (FDR) < 10% for 33 tran-
scription factors). For example, we observed seven PU.1 (SPI1)24,25, 
six ERG26–28, four FLI1 (refs. 28,29), three IRF4 (ref. 30), and three 
RUNX1 (refs. 31,32) binding-site-disrupting variants associated with 
platelet traits (Fig. 2c,d), in addition to many other compelling 
lineage-specific regulatory mechanisms for experimental follow-up 
(Supplementary Fig. 8 and Supplementary Note).

Finally, to identify high-confidence target genes for fine-mapped 
regulatory variants, we built hematopoietic-specific enhancer–pro-
moter maps by using (i) measurements of physical DNA interac-
tions in 15 primary hematopoietic cell populations from promoter 
capture Hi-C (PCHi-C)33 and (ii) the correlation between chromatin 
accessibility and expression of genes in cis across 16 primary hema-
topoietic populations34,35. Altogether, we identified one or more 
experimentally supported target genes for 415 variant–trait associa-
tions, providing testable biological hypotheses for 79% of the fine-
mapped regulatory variants (Fig. 2a,b, Supplementary Figs. 5 and 8,  
and Supplementary Tables 6 and 7). Interestingly, a number of vari-
ants were predicted to alter the transcription of genes encoding hema-
topoietic transcription factors (Fig. 2d,e and Supplementary Fig. 8).  
For example, IRF8 and CEBPA, which encode two essential tran-
scription factors involved in monocyte differentiation36,37, were tar-
gets of fine-mapped variants associated with monocyte count that 
fell within accessible chromatin in monocyte precursors (Fig. 2e).  
Similarly, we determined that GFI1B, KLF2, and MEF2C were 
targets of fine-mapped variants in progenitor-specific accessible 
chromatin associated with mean reticulocyte volume, lymphocyte 
count, and platelet count, respectively (Fig. 2e). Overall, this func-
tional analysis will likely facilitate experimental investigation into 
how common genetic variants regulate hematopoietic lineage com-
mitment and differentiation.

Regions with multiple causal variants. We next conducted a closer 
examination of the 785 trait-associated regions with multiple inde-
pendent causal signals. Among proximal pairs of variants in which 
both variants had PP > 0.50, the majority were >10 kb apart (76%), 
although the variants in seven pairs were within fewer than 100 bp 
of each other (Supplementary Fig. 9 and Supplementary Table 8).  
Across all pairs, 42% of the variants were of the same class (for 
example, coding–coding variants), and pairs of variants in acces-
sible chromatin but in different regulatory regions within 1 Mb of 
each other were typically lineage specific (Supplementary Fig. 9). 
Examples of coding–coding pairs included hemoglobin-associated 
rs1800730 and rs1799945 (PP > 0.66; 4 bp apart) in HFE, the clas-
sic gene mutated in hereditary hemochromatosis; white blood cell 
(WBC)-count-associated rs146125856 and rs148783236 (PP > 0.98; 
24 bp apart) in USP8, which encodes an immune-specific ubiquitin 
ligase and is mutated in Cushing’s disease38,39; and mean platelet vol-
ume (MPV)-associated rs41303899 and rs415064 (PP > 0.76; 835 bp 
apart) in TUBB1, which encodes a β-tubulin protein important for 
proplatelet formation that is mutated in monogenic forms of mac-
rothrombocytopenia40.

Although there were several other interesting pairs of variants 
in accessible chromatin (Supplementary Note and Supplementary 
Fig. 10), we specifically investigated the association with RBC count 
at the CCND3 locus, in which we previously identified a causal 
variant and its target gene41. At this locus, our current approach 
correctly identified the known causal variant (rs9349205) as the 
primary association, as well as ~4 additional independent signals, 
including a secondary imputed variant (rs112233623) associ-
ated with decreased RBC count (Fig. 3a–c). Stepwise conditional 

analysis further validated these findings (Fig. 3b). Notably, these 
variants were missed by fine-mapping if we instead used LD esti-
mated from either the UK10K whole-genome sequencing (WGS) 
reference panel or hard-called variants from the UKB population 
(Supplementary Fig. 11), highlighting the importance of calculating 
LD by using imputed genotype dosages from the GWAS popula-
tion. Remarkably, rs112233623 is only 161 bp from rs9349205, and 
both fell within erythroid-specific accessible chromatin (Fig. 3d).  
Luciferase reporter assays showed that each variant affected enhancer 
activity independently with the minor alleles acting in oppos-
ing directions, consistent with the genetic directionality (Fig. 3e).  
At a separate locus associated with platelet traits, we similarly 
observed a large number of independent signals (approximately 
eight), which allowed us to identify a variant pair (rs49950 and 
rs12005199; PP > 0.99; 123 bp apart) within a single accessible 
chromatin region ~20 kb upstream of AK3, a gene whose zebraf-
ish homolog is essential for platelet (thrombocyte) formation  
(Fig. 3f–i)42. Notably, we again observed that each variant signifi-
cantly affected enhancer activity additively and in concordance with 
the population phenotypes (Fig. 3j).

Mechanisms of pleiotropic variants across distinct blood cell lin-
eages. We next sought to examine the effects of variants associated 
with two or more of the seven distinct blood cell types for which 
phenotypes were available in the UKB. We hypothesized that these 
pleiotropic variants could either (i) ‘tune’ overall blood production 
by simultaneously increasing or decreasing the levels of terminal 
blood cells across multiple lineages or (ii) ‘switch’ blood cell pro-
duction such that one lineage would be favored at the expense of 
others (Fig. 4a).

We restricted our analyses to quantified blood cell counts for 
interpretability and identified 172 pleiotropic variants that colocal-
ized43 (PP > 0.10) to two or more traits (Fig. 4b–d, Supplementary 
Fig. 12, and Supplementary Table 9). Surprisingly, 91% (156/172) 
of these variants exhibited a tuning mechanism, modifying two 
or more lineages in the same direction, whereas the remaining 
9% (16/172) favored one lineage at the expense of other lineages 
(P = 5.08 × 10−30, binomial test). Regardless of direction of effect, 
88% of all pleiotropic variants were noncoding, and those in 
regions of accessible chromatin had 60% more ATAC-seq reads in 
progenitors than in terminal cell types (mean of 4.01 versus 2.44 
counts per million; P = 0.025, Student’s t test), consistent with the 
hypothesis that many of these variants act in common progenitor 
cell populations44,45.

One example of a variant exhibiting a switch mechanism is 
rs78744187 (PP = 0.99 and 0.99), which increased RBC count while 
concomitantly decreasing basophil count (Fig. 4c). rs78744187 
is located in an enhancer specific for common myeloid progeni-
tors (CMPs), a heterogeneous population containing progenitors 
for both basophils and RBCs, approximately 36 kb downstream of 
CEBPA, which encodes a key myeloid transcription factor46. We 
previously reported the association between rs78744187 and baso-
phil count, but not RBC count, and showed that this variant was a 
switch for production of the closely related basophil and mast cell 
lineages45. A second switch variant, rs218265 (PP = 0.99 and 0.64), 
located within a gene desert 1.15 Mb upstream of KIT, increased 
neutrophil count but decreased RBC count. KIT encodes the recep-
tor protein for stem cell factor, a growth-stimulating cytokine 
involved in hematopoietic progenitor cell proliferation47. rs218265 
falls within a region of accessible chromatin that is exclusively open 
in multipotent and heterogeneous populations (Fig. 4d), consistent 
with a role for this enhancer variant in regulating KIT expression in 
the common progenitors of neutrophils and RBCs. Taken together, 
our results suggest that tuning the dosage of key regulatory genes 
in upstream progenitors may switch the production of one lineage 
in favor of another during the early stages of lineage commitment.
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As an example of a pleiotropic variant exhibiting the predomi-
nant tuning mechanism, we found that rs17758695 (PP = 0.99, 0.99, 
and 0.99) was associated with decreases in eosinophil, monocyte, 
and RBC count (Fig. 4e). This variant is located within a progen-
itor-specific region of accessible chromatin in the intron of BCL2, 
which encodes an antiapoptotic protein known to regulate hema-
topoietic differentiation48. This is consistent with the idea that 
regulating a general cell death protein such as BCL2 in a common 
multipotent progenitor would tune the production of multiple cell 
types, in contrast to the switch variants proximal to key regula-
tors of hematopoietic differentiation. An additional tuning variant 
is the missense variant rs12459419 (PP = 0.30, 0.28, and 0.11) in 
the CD33 gene, which was associated with decreases in eosinophil, 
monocyte, and platelet count. CD33 is broadly expressed in hema-
topoietic progenitors and encodes a surface marker of myeloid dif-
ferentiation49 (Supplementary Fig. 12). In summary, our analyses 
support a prominent role for pleiotropy in hematopoietic differen-
tiation, whereby individual variants can act in upstream progeni-
tors to simultaneously tune or switch production and maintenance 
of multiple lineages.

g-chromVAR, a new method to measure fine-mapped GWAS 
trait enrichment among closely related tissues. We next shifted 

our focus in the reciprocal direction—by using fine-mapping 
to determine the exact stages of human hematopoiesis at which 
the regulatory genetic variation underlying each blood cell 
trait is most likely acting. Although methods11,17 have recently 
been developed to calculate enrichment of genetic variation for 
genomic annotations, a method that takes into account both 
(i) the strength and specificity of the genomic annotation and 
(ii) the probability of variant causality, while accounting for LD 
structure, is needed to resolve associations within the closely 
related, stepwise hierarchies that define hematopoiesis. To this 
end, we developed a new approach called genetic-chromVAR 
(g-chromVAR), a generalization of the recently described 
chromVAR method50, to measure the enrichment of regulatory 
variants in each cell state by using fine-mapped variant poste-
rior probabilities and quantitative measurements of regulatory 
activity (Fig. 5a; details in Supplementary Note and Methods). 
We show that g-chromVAR is generally robust to variant pos-
terior probability thresholds and numbers of background peaks 
(Supplementary Fig. 13), captures true enrichments in a simu-
lated setting (Supplementary Fig. 14), is robust to the choice of 
fine-mapping method (Supplementary Table 10), and can identify 
novel enrichments in large epigenomic datasets (Supplementary 
Table 11; details in Supplementary Note).
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To validate g-chromVAR in a realistic setting, we used it along 
with seven other methods to estimate the enrichment of each of the 
16 blood cell traits within the accessible chromatin of 18 hemato-
poietic progenitor and terminal cell populations (Figs. 1a and 5c, 
Supplementary Figs. 15 and 16, and Supplementary Table 4)34,35. To 
compare g-chromVAR’s performance to that of other state-of-the-
art enrichment tools, we leveraged knowledge of the hematopoietic 
system and devised a lineage specificity test (Supplementary Note), 
which is a nonparametric rank-sum test that compares the relative 
ranking of lineage-specific and non-lineage-specific enrichments 

for each of the compared methodologies., We found that g-chrom-
VAR was the most specific of all the tested methods while still 
retaining sufficient power to identify 22 trait–cell type associations 
(Fig. 5d and Supplementary Figs. 13a and 16).

Having validated our approach, we investigated cell type 
enrichments for each of the 16 traits. We found that the most 
lineage-restricted or terminal populations were typically most 
strongly enriched for a corresponding trait association (Fig. 
5e–h). For example, RBC count was most strongly enriched in 
erythroid precursors (Fig. 5e), and lymphocyte count was most 
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strongly enriched in CD4+ and CD8+ T cells (Fig. 5h). In sev-
eral instances, we observed significant enrichments for traits in 
earlier progenitor cells within each lineage, including enrich-
ment for platelet traits in CMPs and enrichment for monocyte 

traits in a specific subpopulation of granulocyte–macrophage 
progenitors (GMPs) (Supplementary Fig. 13a). We sought to 
investigate these enrichments in progenitor cells further at the  
single-cell level.
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GWAS trait enrichment in single-cell chromatin accessibility 
data. Although the strongest g-chromVAR enrichments for blood 
traits were in the most lineage-restricted precursors, we reasoned 
that investigating progenitor populations that had robust enrich-
ment signals, such as CMPs and MEPs, could inform principles 
of the genetic regulation of terminal blood cell production51–55. 
To this end, we scored 2,034 single bone marrow–derived hema-
topoietic stem and progenitor cells34 for GWAS enrichment by 
using g-chromVAR (Fig. 6a). Composite single-cell and bulk cell 
type enrichments were highly correlated (R = 0.84) (Fig. 6b), and 
enrichments along inferred pseudotime trajectories of cellular dif-
ferentiation mirrored our observations from bulk data, albeit with 
finer granularity (Fig. 6c,d). These results suggest that g-chromVAR 
is able to recover known biology from sparse single-cell ATAC-seq 
(scATAC-seq) profiles.

To explore potential heterogeneity within each of the 11 hema-
topoietic progenitor populations, we estimated the variation in 
regulatory genetic enrichments for each trait within the popula-
tions. We found that classically defined CMP (n = 502 cells) and 
MEP (n = 138 cells) populations exhibited significant heteroge-
neity in g-chromVAR enrichments for both erythroid and mega-
karyocyte traits (Fig. 6e). We thus hypothesized that the CMP 
population could be subdivided into megakaryocyte–erythro-
cyte-primed and monocyte-primed subtypes, whereas the MEP 
population could be further subdivided into erythrocyte-primed 
and megakaryocyte-primed subtypes. To test this hypothesis, we 
performed unsupervised clustering on chromatin accessibility 
profiles for the CMP and MEP populations (Supplementary Fig. 
17) and found that the (GWAS-naive) subpopulations were indeed 
differentially enriched for the specific GWAS traits. In agreement 
with these genetic enrichments, we observed differential chroma-
tin accessibility of motifs for lineage-specific master transcription 
factors between the subpopulations that corresponded to the trait 
enrichments, such as increased chromatin accessibility for GATA1 
motifs within the clusters enriched for erythroid traits (Fig. 6f,g 
and Supplementary Table 12). Additional studies are needed to 
determine whether these differences are due to distinct lineage-
biased subpopulations or whether they reflect gradations along a 
common axis of differentiation. Regardless, our findings demon-
strate that genetic variation acts heterogeneously within classically 
defined progenitor populations.

Discussion
Two outstanding challenges in the post-GWAS era are (i) the precise 
identification of causal variants within associated loci and (ii) deter-
mination of the exact mechanisms by which these variants result in 
the observed phenotypes. To address the first point, we used robust 
genetic fine-mapping to identify hundreds of putative causal vari-
ants for 16 blood cell traits, allowing for up to five causal variants 
in each locus. At PP > 0.10, we identified 240 fine-mapped coding 
variants as well as 647 regulatory variants in accessible chromatin 
in at least one of 18 primary hematopoietic populations. Several 
compelling anecdotes, including a number of instances in which 
the activity of a single regulatory element is modulated by multiple 
functional variants, highlight the advantages of allowing for mul-
tiple causal variants when fine-mapping.

To address the second point, we compiled and derived functional 
annotations to nominate regulatory mechanisms and identify puta-
tive target genes. Overall, our comprehensive approach identified 
a high-confidence regulatory mechanism for 145 variants and an 
experimentally supported target gene for 79% of variants in acces-
sible chromatin for distinct lineages. Our investigations into fine-
mapped pleiotropic variants revealed that ~90% of these variants 
act to tune total hematopoietic production, whereas the remaining 
~10% favor production of one lineage at the expense of another 
(switch variants). To further improve identification of causal cell 

types, we developed a new enrichment method (g-chromVAR) that 
can discriminate between closely related cell types and applied it 
to directly probe the regulatory dynamics of hematopoiesis within 
classically defined progenitor populations in bulk and at the single-
cell level. Our ‘top loci’ method is complementary to enrichment 
methods that investigate polygenic signals, such as S-LDSC.

Overall, our integrated approach is designed to sequentially 
identify causal genetic variants, their molecular mechanisms, their 
target genes, and the cell types in which they act. We expect that 
better-powered fine-mapping studies, more numerous and higher-
quality bulk and single-cell epigenomic datasets, and improved 
computational tools will extend the inferences discussed herein. 
Altogether, our study represents a paradigm for the comprehensive 
mapping of variants to function, which can be applied broadly to 
gain insights into the specific mechanisms of variants associated 
with a range of human traits and diseases.

URLs. UCSC Genome Browser visualization hub for all bulk ATAC-
seq data, https://s3.amazonaws.com/atachematopoesis/hub.txt; web 
app to visualize putative causal variants and corresponding annota-
tions, http://molpath.shinyapps.io/ShinyHeme; functional genomic 
annotations, https://github.com/caleblareau/singlecell_bloodtraits/
tree/master/data/annotations.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41588-019-0362-6.
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Methods
Genome-wide association studies. GWAS were carried out for 16 different 
blood cell indices in 114,910–116,667 ‘white British’ individuals from the UKB. 
Imputation was performed using the combined 1000 Genomes Phase 3–UK10K 
panel (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020). To account for 
population substructure in blood cell traits, we regressed each phenotype against 
the first ten principal components of genetic ancestry, age, and sex. We then inverse 
normalized the residuals, which were used as the phenotype measurements for the 
genetic association tests. Specifically, we regressed each phenotype measurement 
against probabilistic imputed allele dosage by using a linear mixed-model approach 
as implemented in BOLT-LMM v2.2 (ref. 56). Genome-wide significance was 
defined as P < 5 × 10−8.

Linkage disequilibrium score regression. We used LD score regression (LDSC) 
to compute narrow-sense heritability estimates and genetic correlations for the 16 
blood cell traits in the UKB. Reference LD scores were computed with a subset of 
unrelated European individuals from the UK10K cohort. To remove genetically 
related individuals, we first used PLINK to construct a filtered list of variants with 
MAF > 0.10 and no pair of variants with r2 > 0.10. These LD- and MAF-pruned 
variants were then used to calculate an identity-by-descent (IBD) matrix, and one 
individual from each pair of samples with IBD proportion (π)̂ > 0.125 was removed 
to produce a final subset of 3,677 unrelated individuals to serve as the reference 
panel for LDSC. After applying the recommended variant filtering, z scores for an 
average of 6,655,000 variants per trait were used as input to LDSC. For heritability 
estimates for variants identified by fine-mapping or linkage to the sentinel variant, 
we note that these estimates may be either greater or smaller than the reported 
values, as previously noted57.

Fine-mapping. Sentinel association regions were constructed as follows: first, all 
variants were ranked by decreasing χ2 statistic. Next, we derived 3-Mb regions 
centered on the top variant; each region is ~3 cM, so all relevant LD structure 
should be fully captured for nearly every region (Yu et al.58 reported that 95% of 
regional recombination rates fall within 3 Mb). This process was repeated for 
each top association variant that did not overlap any 3-Mb regions created thus 
far until there were no genome-wide-significant variants remaining in undefined 
regions. Within each region, we identified all imputed variants with MAF > 0.1% 
and imputation quality (INFO) > 0.6 and extracted z scores from the summary 
statistics for each variant. We next derived dosage LD matrices for each region by 
using LDstore15 on the genotype probability (.bgen) files used for the association 
studies. To be exact, we computed LD matrices from 120,086 individuals who had a 
phenotype for at least one of the 16 blood cell traits.

Fine-mapping was performed on genome-wide-significant GWAS regions by 
using FINEMAP v1.1 software with the z-score and LD matrices as input16. The 
output from FINEMAP is (i) a list of potential causal configurations together 
with their posterior probabilities and Bayes factors, (ii) the posterior probability 
marginalized over the causal configurations that individual variants are causal, 
and (iii) the posterior probability that there is a specific number (between 1 and 
5) of statistically independent associations in each region. Default FINEMAP 
settings were used and all variants with PP > 0.1% were retained for downstream 
analyses. For the CCND3 and AK3 regions in which follow-up luciferase reporter 
assays were performed, we reran FINEMAP allowing for up to ten causal variants, 
confirming approximately four independent effects in the CCND3 locus (60.6% 
PP) but identifying approximately eight independent effects for the AK3 locus 
(59.9% PP).

To confirm select regions with multiple putative causal variants, we 
performed conditional analysis with BOLT-LMM by first conditioning on the 
variant with the lowest P value in the region and then adding to the model 
in a stepwise manner the variant with the lowest conditional P value until no 
additional variant reached the genome-wide significance threshold of 5 × 10−8 in 
the combined model.

Local annotation shifting. We implemented a slightly modified version of 
GoShifter to calculate the enrichment between fine-mapped variants with 
PP > 0.01 for each trait and five different genomic annotations (details in 
Supplementary Note). To obtain the annotation for hematopoietic accessible 
chromatin, we used the consensus peak set for all blood cell types, performed row 
and column quantile normalization on the counts matrix, and kept only peaks that 
had a maximum count in the top 80% for at least one of the 18 cell types. Coding, 
intronic, promoter, and 5′ UTR annotations were obtained from the UCSC 
Genome Browser as previously processed (see URLs)12.

Variant classification and annotation. To partition fine-mapped variants into 
bins of non-overlapping annotations (Figs. 1f,g and 4b), we overlapped variant 
positions with genomic intervals and then classified each variant on the basis of 
the following hierarchy: (i) coding; (ii) promoter; (iii) UTR; (iv) hematopoietic 
chromatin accessible; (v) intronic; and (vi) intergenic. For example, for a variant 
falling in an accessible chromatin region that was an annotated promoter, this 
variant was assigned to the ‘promoter’ class. Variant Effect Predictor (VEP) was 
used to further annotate the functions of coding variants59.

To define pleiotropic variants and relative effect directions, we considered a 
subset of 7 of the 16 total traits that were defined as ‘count’ traits for distinct cell 
types: basophil, eosinophil, neutrophil, platelet, RBC, monocyte, and lymphoid 
counts were the traits used for the respective lineages. Note that basophils, 
eosinophils, and neutrophils were represented together as granulocytes for 
visualization purposes (Fig. 4b) but were still considered to be distinct cell types. 
Tuning variants were defined as those that exhibited the same direction of effect 
for the minor allele across all lineages. Conversely, switch variants were designated 
when the minor allele had differing effect directions for two or more lineages.

Gene-set enrichment analysis. Gene-set enrichments of fine-mapped coding 
variants with PP > 0.10 were calculated with Functional Mapping and Annotation 
of Genome-Wide Association Studies (FUMA)60, by using all protein-coding genes 
as the background model and requiring a minimum overlap of two genes and FDR-
adjusted P < 0.01 for each gene set. Only Gene Ontology (GO) biological processes 
were considered.

ATAC-seq and scATAC-seq analysis and data preprocessing. Chromatin 
accessibility profiles for a total of 18 cell populations, including 16 previously 
reported, were assayed by using FastATAC, an ATAC-seq protocol optimized for 
primary blood cells, as previously described35,61. Sequencing data for each of the 
18 populations were uniformly processed by using a custom pipeline that includes 
removal of sequencing adaptors, alignment using Bowtie2 (ref. 62), and removal of 
PCR duplicates with the Picard RemoveDups command.

Accessible chromatin peaks were called from the 18 sorted populations 
of blood cells by using MACS2 (ref. 63). To derive a consensus set of loci for 
downstream analysis, individual peaks were resized to a uniform width of 500 bp, 
centered on the summit from the MACS2 call as previously described35. To derive 
a consensus peak set for the blood cell types, peaks were combined by removing 
any other peaks overlapping a peak with greater signal at the summit within a 
particular cell type. A total of 451,283 peaks representing a consensus set across 
these 18 sorted bulk populations were called. The average number of fragments in 
this consensus peak set ranged from 4.4 million (pDCs) to 37.1 million (CMPs) for 
a mean of 19.3 million reads in peaks per sorted cell type (Supplementary Table 4).

FACS-sorted cells for nine distinct cellular populations derived from CD34+ 
human bone marrow, which included cell types spanning the myeloid, erythroid, 
and lymphoid lineages, were additionally profiled as previously described34,61. 
Single cells were sorted and then assayed by using scATAC-seq34,64 across a total of 
30 independent single-cell experiments representing six human donors, with each 
cell population assayed from two or more distinct donors. In total, our raw dataset 
comprised 3,072 single-cell chromatin accessibility landscapes with 2,034 cells 
passing stringent quality filtering. These cells yielded a median of 8,268 fragments 
per cell with 76% of those fragments mapping to peaks, resulting in a median 
of 6,442 fragments in peaks per cell, again using a consensus peak set that was 
inferred for these specific progenitor populations34.

To infer dynamic GWAS enrichments across hematopoietic differentiation, 
pseudotime orderings of single cells across three lineages (erythroid, lymphoid, 
and myeloid) were estimated by using an adaptation of the waterfall algorithm65 
as previously described. In brief, this supervised approach fits a regression line 
through relevant cluster centroids (total k = 14) in principal-component space. The 
pseudotime values then represent the Euclidean distance along the interpolated 
lines. Lines were scaled such that the center of the HSC cluster was 0 in all 
trajectories. Further details and diagnostics for this approach are discussed in a 
previous work65.

To assess the regulatory heterogeneity of single cells, we computed a χ2 statistic 
for each trait or cell type’s z scores to test whether the observed variance was 
greater than expected. Under the null distribution, the variance of z scores was 1 
from the definition of our statistic (g-chromVAR methods described below), and 
we observed greater variation than expected only for traits within the CMP and 
MEP populations. Within the CMP and MEP populations, we applied k-medoids 
clustering on the first five principal components within each sorted population 
from global chromatin accessibility profiles for each cell34. For both the CMP 
and MEP populations, the optimal cluster number was determined by maximum 
average silhouette width. Post hoc analyses of heterogeneity within the partitioned 
clusters of erythroid-enriched CMPs confirmed that megakaryocyte–erythroid 
enrichment was not distinct within CMPs.

Isolation of myeloid and plasmacytoid dendritic cells. Peripheral blood cells 
from healthy volunteers were enriched for cell-surface markers by using the 
strategy shown in Supplementary Fig. 7. 55,000 cells from two healthy volunteers 
(two replicates total) were sorted into RPMI-1640 supplemented with 10% FBS, 
washed with PBS, and immediately transposed as previously above. Purities after 
sorting of >95% were confirmed by flow cytometry for all of the samples.

Target gene identification. Raw sequencing reads for sorted populations were 
obtained from previously described bulk RNA-seq experiments34,35 and were 
aligned to the hg19 reference genome by using STAR version 2.5.1b66 with default 
parameters. Per-gene transcript quantifications were summed over biological 
and technical replicates to provide a single transcript count per sorted cell type 
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for 16 total populations matching the analogous bulk ATAC-seq profiles (RNA 
for megakaryocytes and mDCs was absent). To determine empirical peak–gene 
associations, Pearson correlation was computed for each peak within a 1-Mb 
window centered on the transcription start site for each gene by using the log-
transformed counts per million value for each feature.

PCHi-C datasets for 15 terminal hematopoietic cell types as well as for CD34+ 
hematopoietic stem and progenitor cells were processed as previously reported33,67. 
Specifically, variants in accessible chromatin regions were only considered to 
physically interact with a gene’s promoter when the CHiCAGO score was >5.

Transcription factor motif analysis. Prediction of the effects of fine-mapped 
variants on transcription factor binding sites (TFBS) was performed by using the 
motifbreakR package68 and a comprehensive collection of human TFBS models 
(HOCOMOCO22). For all fine-mapped variants with PP > 0.1%, we applied the 
‘information content’ scoring algorithm and used a P-value cutoff of 5 × 10−4 for 
TFBS matches; all other parameters were kept at default settings.

To identify recurrent motifs that were disrupted by fine-mapped variants or 
were spatially proximal to these motifs, we used the findOverlaps() function from 
the GenomicRanges package69. To identify variants near motifs (Supplementary 
Fig. 8d), we extended the range of the motif by 20 bp in both directions. For motif-
breaking and motif-proximal variants, variant–motif pairs were filtered such that 
they intersected a relevant factor in hematopoietic tissue from 2,115 uniformly 
processed datasets in ChIP-Atlas. Relevant transcription factors were defined by 
‘bagging’ motifs on the basis of the similarity of their position-weight matrices 
(Pearson’s R > 0.7). A match was determined when the name of the transcription 
factor from the ChIP-Atlas dataset exactly matched the name of the motif or any 
motif in the same ‘bag’. Conservation profiles for motif-disrupting variants were 
obtained as phyloP estimates70.

To determine whether specific transcription factors were disrupted or proximal 
to variants more than expected by chance, we performed 100,000 permutations 
where we sampled the same number of unique variants with PP > 0.10 from across 
all variants in the 2,054 investigated regions. The expected number of transcription 
factors that were disrupted or proximal to variants was taken to be the mean across 
all permutations, and significance was determined as one over the number of times 
that the number of overlaps was greater for variants with PP > 0.10 than for the 
random sample.

Luciferase reporter analysis. Firefly luciferase reporter constructs (pGL4.24) 
were generated by cloning 300- to 400-nt genomic regions centered on the 
variant(s) of interest (AK3, 325 bp; CCND3, 363 bp) upstream of the minimal 
promoter by using BglII and XhoI sites. The firefly luciferase constructs (500 
ng) were cotransfected with a pRL-SV40 Renilla luciferase construct (50 ng) into 
100,000 K562 cells by using Lipofectamine LTX (Invitrogen) according to the 
manufacturer’s protocol. After 48 h, luciferase activity was measured by Dual-
Glo Luciferase assay system (Promega) according to the manufacturer’s protocol. 
For each sample, the ratio of firefly to Renilla luminescence was measured and 
normalized to the empty pGL4.24 construct.

A total of four haplotypes were constructed per locus to examine the effects 
of two fine-mapped putative causal variants. For the CCND3 locus, we examined 
the effects of rs112233623 (reference, C; alternate, T) and rs9349205 (reference, G; 
alternate, A), which are 161 bp apart. For the AK3 locus, we examined rs409950 
(reference, A; alternate, C) and rs12005199 (reference, A; alternate, G), which are 
separated by 123 bp. A total of nine experimental replicates per haplotype (four 
haplotypes per locus), including the empty pGL4.24 construct, were measured 
across two experimental batches.

To compute the additive and multiplicative effects of each variant, we used a 
generalized linear model of the following form for both the AK3 and CCND3 loci 
separately.

β β β β β~ + + + +Intensity SNP SNP (SNP *SNP ) B0 1 1alt 2 2alt 3 1alt 2alt 4

Here the luciferase intensity is defined as the ratio of firefly to Renilla luminescence 
normalized to the empty vector for each experimental replicate. The additive effects 
of the two SNPs were estimated by using β1 and β2, whereas the multiplicative effect 
of the two SNPs on the same haplotype was computed by using an interaction 
term, β3. We encoded each variable such that the reference allele was 0 whereas 
the alternate allele was 1 for each experimental sample. Finally, we adjusted for 
variable infection efficiency between the experimental batches by using a fixed-
effect variable B (B ∈ {0,1}). To increase power, point estimates and standard errors 
were realized directly from the linear model by using the β coefficients from each 
reporter set rather than the mean of the specific haplotype.

g-chromVAR methodology. The bias-corrected enrichment statistic for T traits 
and a set of S samples (chromatin cell type profiles) with P peaks computed by 
g-chromVAR is a generalization of the chromVAR method50. Intuitively, our 
implementation of g-chromVAR relaxes the requirement in chromVAR that 
trait–peak annotations be binary, allowing for uncertainty in annotations such as 
transcription factor binding or, in our case, localization of GWAS variants (see 
the Supplementary Note for details). Briefly, we use a matrix of variant posterior 

probabilities G, where gi,k is the sum of the posterior probabilities for the variants 
contained in the genomic coordinates of peak i for each trait k. By using the matrix 
of fragment counts in peaks X, where xi,j represents the number of fragments 
from peak i in sample j, the matrix multiplication XT · G yields the total number 
of fragments weighted by the fine-mapped variant posterior probabilities for S 
samples (rows) and T traits (columns). To compute a raw weighted accessibility 
deviation, we compute the expected number of fragments per peak per sample 
in E, where ei,j is computed as the proportion of all fragments across all samples 
mapping to the specific peak multiplied by the total number of fragments in peaks 
for that sample.
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Analogously, ET · G yields the expected number of fragments weighted by the fine-
mapped variant posterior probabilities for S samples (rows) and T traits (columns). 
By using the G, X, and E matrices, we then compute the raw weighted accessibility 
deviation matrix Y for each sample j and trait k (yj,k) as follows.
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To correct for technical confounders present in assays (differential PCR 
amplification or variable Tn5 tagmentation conditions), each peak is assigned a 
background set of peaks that are matched in mean nucleotide GC content and 
average fragment accessibility between the sums of the cell types. An inverse 
Cholesky transformation is applied to a P × 2 matrix containing these variables to 
generate two uncorrelated dimensions describing the per-peak confounding. The 
matrix B(b) encodes this background peak mapping where bi j

b
,
( )is 1 if peak i has peak 

j as its background peak in the b background set (b ∈ {1, 2, ..., 50}) and 0 otherwise. 
The matrices B(b) · X and B(b) · E thus give an intermediate for the observed and 
expected counts also of dimension P by S. For each background set b, sample j, and 
trait k, the elements yj k

b
,
( ) of the background-weighted accessibility deviations matrix 

Y(b) are computed as follows.
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After background deviations are computed over the 50 sets, the bias-corrected 
matrix Z for sample j and trait k (zj,k) can be computed as follows
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where the mean and variance of yj k
b
,
( ) are taken over all values of b (b ∈ {1, 2, 

..., 50}). Sample–trait P values can then be computed from the one-tailed 
normal distribution of these z scores by using the pnorm function in R. Our 
implementation of g-chromVAR utilizes efficient matrix operations for each step 
and can compute pairwise trait–cell type enrichments in ~1 min on a standard 
laptop computer.

Other cell type enrichment methods. To estimate cell type enrichments for each 
trait with stratified LDSC (S-LDSC), we partitioned each trait’s heritability into 
the baseline model of 53 annotations, as well as each of the 18 hematopoietic 
ATAC-seq annotations (one at a time). Similarly, GREGOR71, GPA72, and fGWAS73 
were run while using the same 18 hematopoietic ATAC-seq annotations (one at a 
time) with default parameters for single-trait and single-annotation enrichments. 
P values for cell type enrichment were required to meet a stringent Bonferroni 
threshold of 0.00017 (corrected for 16 traits and 18 cell types).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
g-chromVAR is available as an open-source R package distributed freely at http://
caleblareau.github.io/gchromVAR. All code required to reproduce the results 
discussed herein has been made available at http://github.com/caleblareau/
singlecell_bloodtraits.

Data availability
All processed data are available on GitHub (https://github.com/caleblareau/
singlecell_bloodtraits/). ATAC-seq profiles are available from the Gene Expression 
Omnibus (GEO) under accession GSE119453 and from the Sequence Read Archive 
(SRA) under accession PRJNA491478.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection BOLT-LMM (2017 version) was used to generate summary statistics; Luciferase reporter assay data was analyzed with R-3.4, and ATAC-
seq profiles for myeloid dendritic cells and plasmacytoid dendritic cell were analyzed using bowtie2 and MACS2.

Data analysis We developed g-chromVAR which is available on GitHub (https://github.com/caleblareau/gchromVAR). The majority of analyses were 
performed in R-3.4, and the specific packages used as well as reproducible analysis code is available on GitHub (https://github.com/
caleblareau/singlecell_bloodtraits). We also used FINEMAP v1.1, S-LDSC (2017 version), bgenix (2017 version),  qctools (2017 version), 
BOLT-LMM (2017 version), MACS2, and bowtie2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All processed and raw data are available on GitHub (https://github.com/caleblareau/singlecell_bloodtraits). ATAC-seq profiles are available from NCBI GEO 
GSE119453 and SRA PRJNA491478.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We did not determine sample size for UKB GWAS data. For Luciferase reporter experiments , typically, n = 3 replicates are performed for 1 
variant, but we wanted to obtain robust estimates of 2 variant haplotypes so we performed n = 9 replicates per condition. 

Data exclusions In order to meet fine-mapping model assumptions, variants with MAF < 0.1% and INFO < 0.6 were excluded, as were non-white British 
samples and samples without measured blood cell phenotypes from the UKB interim release. HLA and sex chromosomes were also excluded.

Replication Regulatory genetic variant associations were successfully validated with Luciferase reporter assays. Otherwise no replication was attempted.

Randomization We did not allocate participants into groups.

Blinding Statement from the UKB: Recruitment were via centrally coordinated identification and invitation from population-based registers (such as 
those held by the NHS) of potentially eligible people living within a reasonable travelling distance of an assessment centre (located around the 
UK). This central recruitment strategy will allow invitations to be targeted to enhance generalisability and to make allowance for the impact on 
participation rates of various factors (e.g. age, sex, ethnicity, socioeconomic status). Each assessment centre will aim to recruit as many as 
possible of the nearby target population during a period of about six months to one year (depending on the local population density and 
transport links), and will then be relocated in order to achieve recruitment across most of the UK.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) K562 cells were obtained from ATCC. 

Authentication Validated by the Human Cell Line Identity Verification platform of the Dana-Farber Cancer Institute (http://
moleculardiagnosticscore.dana-farber.org/human-cell-line-identity-verification.html).

Mycoplasma contamination All cell lines tested negative.

Commonly misidentified lines
(See ICLAC register)

None.

Human research participants
Policy information about studies involving human research participants

Population characteristics UKB recruited nearly 500,000 people aged 40-69 years in 2006-2010 from across the UK. We only analyzed individuals of "white" 
British ancestry who passed QC. Please note that only deidentified data was utilized in this study.
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Recruitment Please see Population characteristics and Blinding sections for details on UKB recruitment.

Ethics oversight This project was approved by the UKB under project 11898 and 31063.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Samples were prepared from bone marrow or peripheral blood, as has been described previously (Corces et al., Nat. Genet., 
2016; Buenrostro et al., Cell, 2018).

Instrument Becton Dickinson FACSAria II

Software BD FACSDiva and FlowJo

Cell population abundance Cell population adundances were determined for each phenotypic population, as has been described previously (Corces et al., 
Nat. Genet., 2016; Buenrostro et al., Cell, 2018).

Gating strategy The following antibodies were used for flow cytometry: BDCA-3-APC (Clone AD5-14H12; Miltenyi), CD123-BV421 (Clone 6H6; 
Biolegend), CD11C-PECy7 (Clone B-ly6; BD), HLA-DR-APCCy7 (Clone G46-6; BD), CD1C-PE (Clone AD5-8E7; Miltenyi), CD3-FITC 
(Clone UCHT1; BD), CD19-AlexaFluor 488 (Clone HIB19; Biolegend), CD45-V500 (Clone HI30; BD).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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