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Although the primary sequence of the eukaryotic genome is 
largely invariant across cells in an organism, the quantitative 
expression of genes is tightly regulated to define the func-

tional identity of cells. Eukaryotic cells use diverse mechanisms to 
regulate gene expression, including an immense repertoire (>106) 
of DNA regulatory elements1,2. These DNA regulatory elements are 
established and maintained by the combinatorial binding of tran-
scription factors (TFs) and chromatin remodelers, which function 
together to recruit transcriptional machinery and drive cell-type-
specific gene expression3,4. DNA regulatory elements, which are 
characterized by their functional roles (for example, promoters, 
enhancers and insulators), are marked by a diverse array of histone 
and DNA modifications4. Both classical observations5 and recent 
genome-wide efforts2 have shown that active regulatory elements 
are canonically nucleosome free and accessible to transcriptional 
machinery. Thus, methods that measure chromatin accessibility 
by combining sensitivity to enzymatic digestion with sequencing6–8 
provide an integrated map of chromatin states that encompasses a 
diverse repertoire of functional regulatory elements2,5.

Methods to assay chromatin accessibility genome-wide have 
been used for a variety of applications including the discovery of 
(1) cell-type-specific cis-regulatory elements, (2) master TFs that 
shape the regulatory landscape or (3) mechanisms for disease-rele-
vant non-coding genetic variation2,9,10. However, these ‘epigenomic’ 
approaches are generally applied to bulk samples, limiting their 
resolution when considering the regulatory diversity underlying 
heterogeneous cell populations. In parallel, methods to measure 
the transcriptomes of single cells have been used to discover new 
cell types11 and new functional cell states12,13, and provide additional 
motivation for the development of tools to measure chromatin  
regulation at single-cell resolution14.

Technological innovations have enabled the development of 
single-cell epigenomic methods14–16; however, these approaches 
remain relatively low throughput and have high costs. Assay for 
transposase-accessible chromatin using sequencing (ATAC-seq)8,17 
is particularly promising for single-cell studies owing to the rela-
tive simplicity of the experimental protocol and its widespread 
use. Previous efforts have adapted ATAC-seq to profile chromatin 
accessibility in single cells, either by individually isolating cells18 
or by the combinatorial addition of DNA barcodes19, to enable 
de novo deconvolution of cell types and the discovery of cell-type-
specific regulatory factors20,21. However, these current methods for 
single-cell ATAC-seq (scATAC-seq)18,19 either remain relatively 
low throughput (hundreds to thousands of cells per experiment) 
or provide low-complexity data (thousands of fragments per cell). 
Therefore, new methods for sensitive, scalable and high-throughput 
profiling are needed to measure the full repertoire of regulatory 
diversity across normal and diseased tissues.

To meet the challenges of assaying chromatin states across the 
breadth and depth of complex cell populations within tissues, we 
report the development of dscATAC-seq. In brief, our approach 
utilizes a droplet microfluidic device to individually isolate and 
barcode single transposed cells. We demonstrate that this approach 
results in substantially higher data quality than existing methods, 
and describe an approach to improve cell throughput and the effi-
ciency of cell capture by super-loading barcoded beads into drop-
lets. Furthermore, we extend this droplet barcoding approach by 
combining it with barcoded transposition19 and super-loading of 
cells into droplets, to develop droplet-based single-cell combina-
torial indexing for ATAC-seq (dsciATAC-seq), providing chroma-
tin accessibility profiles at substantially improved throughput. We 
apply these approaches to generate accessibility profiles of 510,123 
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cells, which include (1) a reference map of chromatin accessibility 
in the mouse brain (46,653 cells) and (2) an unbiased map of human 
hematopoietic states in the bone marrow (60,495 cells), isolated cell 
populations from bone marrow and blood (52,873 cells), and bone 
marrow cells in response to stimulation (75,958 cells). These unbi-
ased chromatin accessibility profiles provide new insights into the 
regulators defining cells within these tissues. Finally, we find that 
pooled stimulus of human bone marrow-derived cells uncovers 
mechanisms underlying genetic variants that lead to human disease. 
Overall, this new approach for high-throughput single-cell epig-
enomics charts a clear course toward obtaining an epigenomic atlas 
across normal tissues and provides new opportunities for single-cell 
epigenomic profiling at a massive scale.

Results
scATAC-seq implemented on a droplet microfluidic device. In 
this work, we describe a method for single-cell profiling of chro-
matin accessibility using droplet microfluidics and ATAC-seq. 
Consistent with previously described methods for bulk ATAC-
seq, nuclei are first transposed using Tn5 transposase to inte-
grate sequencing adaptors into regions of open chromatin8,17,22. 
Importantly, previous studies have described that transposed nuclei 
and DNA remain intact after transposition19,23. We therefore lever-
age this finding and use intact transposed nuclei as input material 
for a droplet microfluidics device, which simultaneously encapsu-
lates transposed chromatin with PCR reagents and barcoded beads 
into a single droplet (Fig. 1a). Each bead contains clonal copies of 
oligonucleotides that encode a common PCR primer sequence and 
a bead-specific DNA barcode. After encapsulation, we perform 
droplet PCR to add cell-identifying DNA barcodes to transposed 
chromatin, and the resulting pool of PCR products are then col-
lected and prepared for sequencing. We refer to this droplet-based 
scATAC-seq platform as dscATAC-seq.

To develop a robust and high-sensitivity platform, we optimized 
the concentration of Tn5 transposase (Fig. 1b and Supplementary 
Fig. 1a–c). We found that increasing the total abundance and concen-
tration of Tn5, which is the same enzyme contained within a widely 
available commercial product (Methods), substantially improved 
the total number of nuclear fragments, including improvements to 
the fraction of reads at transcription start sites (TSSs) and distal ele-
ments (Fig. 1b and Supplementary Fig. 1a–c). Furthermore, we also 
adapted previously described transposition methods to reduce the 
proportion of mitochondrial reads17,22 (Methods). Altogether, these 
optimizations, combined with droplet encapsulation and PCR, 
provide a platform for high-yield and high-efficiency single-cell  
epigenomic profiling.

To optimize cell capture and throughput, we developed a joint 
experimental and computational strategy to super-load beads into 
droplets. Our computational strategy, which we call bead-based 
scATAC processing (BAP), determines bead barcodes with a high 
overlap of Tn5 insertion positions along the genome to identify 
and merge barcodes within a common droplet (Supplementary  
Figs. 1d and 2a,b). This analytical approach enables loading of beads 
at higher density (which increases the number of droplets with one 
or more beads) by identifying single cells with more than one bead 
barcode (Supplementary Fig. 2c,d and Supplementary Note). To 
validate our approach, we included a library of random oligonucle-
otides in a dscATAC-seq experiment, enabling us to define true-pos-
itive bead pairs on the basis of overlap of these exogenous sequences 
(Supplementary Fig. 2b,e–j). Using these orthogonal readouts, the 
unique Tn5 insertions across single cells and the random oligonucle-
otides introduced in this experiment, we computed precision-recall 
and receiver-operating-characteristic curves to verify the accuracy 
and precision of the BAP approach (mean area under the receiver-
operating-characteristic curve (AUROC) = 1.000 and mean area 
under the precision-recall curve (AUPRC) = 0.997) (Supplementary 

Fig. 2k; Methods). We also found consistent experimental results 
across a range of bead concentrations without loss of data quality 
(Supplementary Fig. 2l‒o). To compare the efficacy of our approach 
with that of other similar methods, we uniformly processed cell 
line data (from GM12878 and K562) generated using dscATAC-
seq and four other recently published approaches18,19,24,25. We found 
that chromatin accessibility from bulk ATAC-seq8 and DNase–
seq2 and the aggregate chromatin accessibility across the different 
single-cell technologies18,19,24,25 were highly correlated (Fig. 1c,d).  
We also observed a collision rate of <2% (defined by >10% alter-
nate species) when using 800 beads per microliter and 5,000 beads 
per microliter (Fig. 1e and Supplementary Fig. 2n,o). Notably, this 
estimated collision rate (<2%) is considerably lower than that of 
other previously described high-throughput single-cell combina-
torial indexing for ATAC-seq (sciATAC-seq) methods19,24 (>5%) 
(Supplementary Fig. 3a). Our dscATAC-seq method achieved 
improved library complexity per cell and numbers of cells per exper-
iment without compromising the proportion of reads mapping to 
the nuclear genome (Fig. 1f and Supplementary Fig. 3b,c), both of 
which are common quality metrics for scATAC-seq experiments. 
Notably, dscATAC-seq recapitulated known variation in the activ-
ity of TF binding motifs across single GM12878 cells, as previously 
reported18,26 (Supplementary Fig. 3d). Taking these results together, 
our new methodology provides an approach for high-resolution 
profiling of chromatin accessibility across thousands of single cells.

Epigenomic diversity of the adult mouse brain. We sought to 
determine whether our approach could be applied to large-scale 
efforts to identify cell types within complex tissues de novo. Thus, 
we applied the dscATAC-seq platform to whole-brain tissues 
derived from two mice using our super-loaded bead concentra-
tion (5,000 beads per microliter). Over 12 experimental libraries, 
we observed a median cell capture of 5,324/5,600 (95%), consistent 
with our theoretical expectation (Supplementary Fig. 2d). Cells that 
passed additional stringent quality filters had a median of 34,046 
unique nuclear reads, 58.8% of reads in peaks and an average of 2.5 
bead barcodes per cell for 46,653 total cells (Supplementary Fig. 4a).

To characterize differences in chromatin accessibility across 
cell types, we first reduced the dimensionality of our mouse brain 
profiles by computing k-mer deviation scores (7-mers) using the 
chromVAR algorithm26. Cell clusters were identified using the 
Louvain modularity method built from a cell nearest-neighbor 
graph using the 7-mer scores, which uncovered 27 cell clusters. We 
then used these 7-mer features to map each cell to a two-dimen-
sional representation with t-distributed stochastic neighbor embed-
ding (t-SNE) (Fig. 2a). Importantly, these clusters were largely 
uncorrelated with known technical confounders (Supplementary 
Fig. 4b–d), and we observed a largely consistent pattern when com-
pared to dimensionality reduction and clustering using the latent 
semantic index (LSI) of our dscATAC-seq data as has been previ-
ously performed27,28 (Supplementary Fig. 4e). For comparison with 
previous techniques, we also analyzed published sciATAC-seq data 
from two mouse brains27, where we identified 13 clusters using the 
same computational approach (Supplementary Fig. 4f). We attri-
bute the lower number of clusters to the smaller number of cells 
assayed (5,744 cells), the lower library complexity (median 14,681) 
and the smaller fraction of reads in peaks per cell (median 30.0%) 
(Supplementary Fig. 4g,h).

To annotate these clusters, we calculated per-cluster promoter- 
region chromatin accessibility scores (weighted-sum of chromatin  
accessibility in the 200-kb region centered on a TSS) (Supplementary 
Fig. 5a and Supplementary Table 1). Of note, dimension reduc-
tion using promoter-region chromatin accessibility scores for 
all genes resulted in reduced resolution of neuronal subclusters 
(Supplementary Fig. 5b). We therefore used previously annotated 
marker genes for mouse brain to correlate our promoter-region 
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chromatin accessibility scores to a recently described single-cell tran-
scriptomic atlas of cell types across nine regions of the adult mouse 
brain29. We then used the highest correlation to the clusters from 
single-cell RNA sequencing (scRNA-seq) to partition the dscATAC-
seq clusters into the major cell types from the mouse brain. These 
clusters included microglia (MG1), oligodendrocytes (OG1), oli-
godendrocyte progenitor cells (OPCs; P1), astrocytes (A1), endo-
thelial cells (E1), inhibitory neurons (IN01–IN05) and excitatory 
neurons (EN01–EN17) (Fig. 2a). Pooled ATAC-seq signal (Fig. 2b) 
and promoter-region chromatin accessibility scores (Supplementary 
Fig. 5c,d) at known cell-type-specific gene markers further validated 
the cluster assignments. Interestingly, we also observed consistently 
higher library complexity and a higher ratio of distal to promoter 
reads per cell for annotated neurons as compared to other cell types, 
suggesting that neurons may have overall increased chromatin acces-
sibility at distal regulatory elements (Supplementary Fig. 5e–g).

To refine cluster annotations, we employed an optimal match-
ing algorithm to link our promoter accessibility scores to two 
published scRNA-seq datasets29,30 (Fig. 2c). Here we identified 

multiple scRNA-seq clusters to be highly correlated with each of 
our scATAC-seq clusters, likely reflecting the nature of the anno-
tations, which classify cell types both by expression signatures 
and from regions of the brain. To define the most likely pairs, we 
employed the Gale–Shipley algorithm to maximize the global cor-
relation (Spearman) of our cluster assignments to scRNA-seq clus-
ters (Supplementary Table 2; Methods). Differentially enriched 
genes in each scATAC-seq cluster provided further insights into  
the putative cell identities (Fig. 2d). For instance, enrichment of 
chromatin accessibility in Sst from the IN04 cluster suggests that 
this cluster corresponds to Sst+ (somatostatin-expressing) neurons, 
a defined subset of GABAergic inhibitory neurons with high lev-
els of spontaneous activity31. Furthermore, chromatin accessibility 
for Syt6, a marker of layer 6 pyramidal neurons32, was enriched in 
EN12. Htr1a and Htr2c, which encode serotonin receptors and are 
known markers of serotonin neurons33, had enriched accessibility in 
EN10 and EN07, respectively. Lhx1, encoding a TF that is enriched 
in the suprachiasmatic nucleus, which maintains synchrony among 
circadian oscillator neurons34, had enriched accessibility in EN04. 
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Fig. 1 | dscAtAC-seq enables high-resolution characterization of open chromatin regions in single cells. a, Schematic of dscATAC-seq. Cells are 
transposed with Tn5 transposase, and transposed chromatin is then barcoded and amplified in a microfluidic device. b, Comparison of per-cell library  
sizes using different Tn5 conditions in K562 cells. Three replicates (Rep1, Rep2, Rep3) are shown for the concentrated enzyme mixture (n = 500 cells  
per replicate). c, Comparison of the aggregate chromatin accessibility profiles from GM12878 cells using different technologies, and visualization of  
single-cell chromatin accessibility profiles from dscATAC-seq. The aggregate chromatin accessibility profile from dscATAC-seq is representative of at  
least ten replicates. d, Spearman correlation of reads in chromatin accessibility peaks across bulk and single-cell technologies for GM12878 and K562  
cells (n = 1 replicate for each). e, The number of unique fragments aligning to the human or mouse genome using human (GM12878) and mouse (3T3) 
cells at 800 beads per microliter. f, Quality metrics of scATAC-seq methods for GM12878 cells. The median library size for dscATAC-seq was 165,204 
reads (left; all reads reported passed quality filters) as compared to profiles generated from the Fluidigm C1 (ref. 18) (50,443 reads) and sciATAC-seq 
methods (4,641 reads, Cusanovich19; 6,225 reads, Preissl24; 46,730 reads, Pliner25). The median fraction of mapped nuclear fragments for dscATAC-seq is 
95% (middle). In box plots center lines indicate the median, box limits indicate the first and third quartiles and whiskers indicate 1.5× interquartile range 
(IQR). The sample size for each method is shown in Supplementary Fig. 3c.
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In addition to the inference of cell types, our approach also enabled 
the unbiased identification of 135,737 cell-type-specific chro-
matin regulatory elements (Fig. 2e and Supplementary Table 3),  
which further validates the unique identity of each cell cluster and 
provides a general resource for defining regulatory elements as  
cell-type-specific reporters as part of the effort to better understand 
the mouse brain35.

To further utilize the underlying chromatin data of our  
resource, we sought to examine cell-type-specific TF regulators 

within each cluster using deviations of TF motifs. We observed 
strong enrichment of the motifs for Bcl11b (Fig. 2f) and Sox10 
(Fig. 2g) in the microglia and oligodendrocyte clusters, respec-
tively. These known master regulators further validate the clusters 
assigned using our approach. Next, we identified highly specific 
activity for the Nr4a2 motif (Fig. 2h), suggesting that the EN13 
cluster comprises dopaminergic neurons, given the critical role of 
Nr4a2 in the development and maintenance of the dopaminergic 
system36. In addition to observing cluster-specific TFs, we found 
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Fig. 2 | De novo classification of cell types in the mouse brain. a, A t-SNE visualization of cells (n = 46,653) derived from two whole mouse brains across 12 
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marker genes for each cluster are indicated. e, Chromatin accessibility signal across 135,737 cell-type-specific peaks within clusters defined in the mouse brain. 
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j, Comparison of promoter-region chromatin-accessibility scores between cells from the JunB-high and JunB-low groups of the EN01 cluster. Empirical densities 
of 47 annotated IEGs as compared to all annotated genes are shown. The P value is from a two-tailed, two-sample Kolmogorov–Smirnov (n = 24,360 genes).
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considerable within-cluster variability for the JunB motif specific 
to neuron clusters (Fig. 2i). We hypothesized that this variability 
might reflect neural activity driving expression of immediate early 
genes (IEGs)29,37. Indeed, this hypothesis was supported by a sta-
tistically significant enrichment of accessibility for 47 previously 
annotated IEGs in cells from the JunB-high group (z score > 0)  
as compared to the JunB-low group (z score < 0) within the EN01 
cluster (two-sample Kolmogorov–Smirnov test, P = 1.93 × 10−7;  
Fig. 2j). Altogether, we observe that the dscATAC-seq platform  
provides a powerful means for defining and annotating cell types 
and states and identifying cell-type-specific chromatin features.

Droplet-based sciATAC-seq for massive-scale single-cell studies.  
Although the dscATAC-seq approach can be scaled to generate data 
for large numbers of cells by simply performing the experiment 
across many replicates, as shown above (Fig. 2), we reasoned that we 
could further increase cell throughput by surpassing Poisson load-
ing of cells in droplets (one cell per droplet). We therefore sought to 
combine this approach with combinatorial indexing19,23 to improve 
throughput and enable multiplexing of multiple samples in a given 
experiment. To achieve this, we developed dsciATAC-seq, wherein 
Tn5 transposase is loaded with barcoded DNA adaptors to add well-
specific DNA barcodes to open chromatin. Following barcoded 
transposition, transposed cells were pooled and loaded in our drop-
let microfluidics device at high density to simultaneously encapsu-
late multiple Tn5-barcoded cells with multiple beads in each droplet 
(Fig. 3a,b). Thus, each individual cell may be identified by both the 
droplet-specific bead barcode and the well-specific Tn5 barcode, 
enabling an increase in cell throughput proportional to the initial 
number of Tn5 barcodes used in the experiment. Using our droplet-
based platform with barcoded Tn5 reactions increases the number 
of theoretical barcode combinations to enable greater throughput of 
cells or samples (if cells originate from different samples).

We first implemented this technology with 24 transposase bar-
codes and generated high-quality chromatin accessibility profiles 
for up to 50,000 cells in a single well of the device (representing 
one experimental sample). Analysis of species mixing (using Tn5-
barcode-aware parsing; Methods) confirmed that we could increase 
cell throughput approximately tenfold while maintaining a collision 
rate lower than 5% when using 24 transposase barcodes (Fig. 3c–e 
and Supplementary Fig. 6a) and showed a further reduction in the 
overall detected collision rates at large cell inputs with 48 barcodes 
(Supplementary Fig. 6b). Altogether, in this cell titration experi-
ment, we generated 274,144 single-cell profiles demonstrating the 
massive scalability of this approach. Notably, to perform this exper-
iment, we purified and in  vitro assembled Tn5 transposase with 
different barcodes separately38. As this proof-of-concept experi-
ment did not utilize the optimized Tn5 concentration described in  
Fig. 1b, we observed fewer reads per cell but maintained a high  
fraction of reads in peaks (72.2%). Together, these experiments 
demonstrate that barcoded Tn5 can enable super-Poisson loading 
of cells into droplets to achieve substantially greater throughput 
for generating epigenomic profiles from between 104 and 105 single 
cells per experiment.

Chromatin accessibility profiling of human bone marrow. 
Barcoded Tn5 transposition enables a substantially increased cell 
throughput and provides an opportunity to multiplex scATAC-seq 
for multiple conditions or samples. Notably, tissue-scale perturba-
tions39 have been used to uncover diverse cell response dynamics40. 
We therefore reasoned that pooled stimulation across heteroge-
neous cell types within bone marrow mononuclear cells (BMMCs) 
would provide unique avenues to understand the functional roles 
of epigenomic diversity within human bone marrow. To achieve 
this, we used dsciATAC-seq with 96 transposase barcodes to pro-
file BMMCs from two human donors before (untreated controls) 
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and after stimulation, producing chromatin accessibility profiles 
for a total of 136,463 cells that passed quality filters (Fig. 4a and 
Supplementary Fig. 7a–f).

The reference map of 60,495 resting cells (untreated controls) 
revealed the major lineages of hematopoietic differentiation de novo. 
To analyze these reference datasets, we projected the untreated 
BMMCs onto hematopoietic development trajectories using a ref-
erence-guided approach, whereby single cells were scored by prin-
cipal components trained on bulk sorted hematopoietic ATAC-seq 
profiles21 (Fig. 4a; Methods). With this approach, we were able to 
visualize and predict cell labels given the bulk reference map of epig-
enomic states (Fig. 4b). Furthermore, using the Louvain modularity 
method, we identified 15 distinct clusters from the 60,495 resting 
cells, which recapitulated the major constitutive cell types in the 
human hematopoietic system (Fig. 4c). These de novo-derived sin-
gle-cell clusters reflected changes in chromatin accessibility medi-
ated by key lineage-specific TFs, corresponding to altered motif 
accessibility for TFs associated with the stepwise progression of B 
cell development from hematopoietic stem cells to mature B cells 
(Fig. 4c,d). While embedding and cell clustering in our approach 
were performed on the basis of bulk projections in keeping with 
our previous work, we noted a considerable concordance of these 
data using our de novo k-mer strategy (Supplementary Fig. 7g–i). 
Furthermore, we observed unexpected epigenomic heterogeneity 
across TF motifs, including those of CEBPD and BCL11A, within 

monocyte clusters (Mono-1 and Mono-2), which likely reflects the 
heterogeneous developmental transitions from myeloid progenitors 
to mature monocytes, myeloid dendritic cells (mDCs) and granulo-
cytes (Supplementary Fig. 8a).

To validate the clusters and cell-type annotations from our 
approach, we assigned previously obtained scATAC-seq profiles 
from progenitors in human bone marrow and peripheral blood 
monocytes isolated using fluorescence-activated cell sorting (2,034 
cells)21 to the clusters defined using our method. We classified these 
published single-cell data to clusters on the basis of the minimum 
Euclidean distance of a single-cell profile to a cluster medoid. We 
observed considerable overlap between each isolated subset and its 
corresponding cluster in the dsciATAC-seq dataset, validating the 
annotations for progenitor cell types (Fig. 4e). Furthermore, we 
performed dscATAC-seq on CD34+ bone marrow progenitor cells, 
peripheral blood mononuclear cells (PBMCs) and bead-enriched 
subpopulations of PBMCs to derive a total of 52,873 cells, which 
validated our cluster label assignments for mature cell types (Fig. 4f 
and Supplementary Fig. 8b). We also used an orthogonal approach 
to visually validate these findings by dimensionality reduction 
using the uniform manifold projection (UMAP) algorithm41, which 
allowed for data to be projected onto the dsciATAC-seq base dimen-
sionality (Supplementary Fig. 8c–f). Collectively, we have used this 
approach to define a reference epigenomic atlas of cell states within 
hematopoietic cells in the human bone marrow, highlighting the 

e

−20

0

20

−20 0 20

t-SNE1

t-
S

N
E

2

f

CLP

Pro-B

Pre-B

B

c

HSPC

CLP
Pro-B
Pre-B
B

HSPC–ery
Ery early
Ery late

Mono-1
Mono-2
pDC
CD4
CD8
NK
Collision

Cluster ID

Committed HSPC

b

−20

0

20

−20 0 20

t-SNE1

t-
S

N
E

2

Most similar
B
CD4
CD8
CLP
CMP
Ery
GMP
HSC
LMPP
mDC
Mega
MEP
Mono
MPP
NK
pDC

d

BCL11A motif EBF1 motif 

RFX3 motif ID4 motif 

t-
S

N
E

2

t-SNE1

Human bone marrow

Control Stimulate

a

Low High

TF score (±3σ)

CD34

PBMC

B

Mono

CD4

CD8

NK

HSPC

HSPC–e
ry

Ery
-e

ar
ly

Ery
-la

te
pD

C
CLP B

M
on

o-
1

M
on

o-
2

CD4
CD8

NK

Coll
isi

on

HSPC

HSPC–e
ry

Ery
 e

ar
ly

Ery
 la

te
pD

C
CLP

Pro
-B

Pre
-B

Pro
-B

Pre
-BB

M
on

o-
1

M
on

o-
2

CD4
CD8

NK

Coll
isi

on

0 50

Percentage within cluster

B
ea

d 
is

ol
at

es
 (

th
is

 s
tu

dy
) 

HSC

LMPP

GMP

MPP

CMP

MEP

pDC

CLP

Mono

0 100
Percentage within cluster

Clusters

F
A

C
S

 is
ol

at
es

 fr
om

 r
ef

. 2
1

Clusters

2.5 3.0 3.5 4.0

136,463 cells
passing filter

log
10
(unique nuclear reads)

P
ro

po
rt

io
n 

of
 r

ea
ds

 in
 p

ea
ks

 (
%

)

0

50

100

60

Unlabeled
single cell

Cell-type
predictionProjection

Bulk reference

Transpose with 96 Tn5 barcodes

Pool, droplet PCR
and sequencing

Library quality control

A
na

ly
si

s

HSC

Fig. 4 | dsciAtAC-seq of human bone marrow cells reveals the major lineages of hematopoietic differentiation. a, Schematic of the experimental and 
computational workflows used to assess dsciATAC-seq data from BMMCs. Ninety-six Tn5 transposase barcodes were used to define different donors and 
stimulation conditions. The plot for library quality control displays a summary of data that passed quality filters across all assayed cells. The total number 
of cells that passed filters of 60% reads in peaks and 1,000 unique nuclear reads was 136,463. b,c, Two-dimensional t-SNE embedding of single BMMCs 
without stimulation (n = 60,495 cells). Cells are colored by the most correlated cell type from a bulk ATAC-seq reference (b) or 15 de novo-defined 
cluster assignments covering known hematopoietic cell types (c). Cell types covering the B cell differentiation trajectory are highlighted. d, Single cells 
are colored by TF motif accessibility scores, computed using chromVAR26, for the motifs of RFX3, ID4, BCL11A and EBF1. e,f, Confusion matrices showing 
the percentage overlap of published scATAC-seq from FACS-isolated subsets21 (e) and dscATAC-seq data from bead-isolated subsets generated in this 
study (f) with clusters derived from dsciATAC-seq. Cell types: common myeloid progenitor, CMP; erythroid, Ery; granulocyte-monocyte progenitor, GMP; 
lymphoid-primed multipotent progenitor, LMPP; megakaryocyte, Mega; multipotent progenitor, MPP; plasmacytoid dendritic cells, pDC.

NAtuRe BioteChNoLoGy | VOL 37 | AUGUST 2019 | 916–924 | www.nature.com/naturebiotechnology 921

http://www.nature.com/naturebiotechnology


Articles NATuRe BioTeCHNology

applicability of our combinatorial approach to the generation of 
accurate large-scale epigenomic maps to define cell types within 
primary human tissues.

Regulatory consequences of multi-lineage stimulation. Our multi-
plexed, dsciATAC-seq method further provides a unique opportunity 
to decipher regulatory consequences of perturbation without con-
cerns for batch effects, which can confound experimental results. To 
characterize the response of each immune cell cluster to stimulation 
conditions, we explored the differences between our untreated control 
cells and ex vivo cultured and lipopolysaccharide (LPS)-stimulated 
BMMCs (Fig. 4a). To determine trans-acting regulators altered in 
response to perturbation, we developed an analytical strategy wherein 
we computed differential TF scores by (1) defining a k-nearest neigh-
bor map connecting stimulated cells to control cells and (2) calculating, 
for each cell, the difference between the TF score for the cell and the 
average score for the 20 nearest stimulated cells (Fig. 5a). Interestingly, 
we found significant and highly correlated epigenomic responses to 

both ex vivo culture and LPS stimulation (Supplementary Fig. 9a–e), 
suggesting that the effects of ex vivo culture dominate those induced 
by LPS. For clarity we simply refer to these conditions as ‘stimulation’ 
for downstream analysis. With this stimulation data representing  
the full spectrum of bone marrow hematopoietic cell states, we found 
cell-type-specific induction of a diverse repertoire of TF motifs  
(Fig. 5b–d and Supplementary Fig. 9f–j). The differential activity 
observed included increased accessibility at the Jun and NF-κB motifs, 
which was largely localized to human hematopoietic stem and pro-
genitor cells (HSPCs) (Fig. 5b,c), depletion of accessibility at the SPIB 
motif in myeloid cell types (Fig. 5d) and relatively weak induction 
of accessibility at the IRF8 (myeloid) and MAFF (megakaryocyte– 
erythrocyte progenitor (MEP) and common lymphoid progenitor 
(CLP) to pre-B) motifs (Supplementary Fig. 9i,j). Interestingly, acces-
sibility at the Jun and NF-κB motif was largely correlated in HSPCs, 
with the exception of CLPs and cells from early erythroid differen-
tiation, where cells appeared to respond exclusively by induction of 
accessibility at the NF-κB motif (Fig. 5b,c).
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Next, we examined the cis-regulatory consequences of stimula-
tion across our multi-lineage defined cell states. To compute differ-
ential chromatin accessibility peaks within each cluster, we devised a 
permutation test for each peak, permuting control and perturbation 
cell labels, which allowed us to improve the robustness of our statis-
tical methods by considering each cell as an independent observa-
tion (Supplementary Fig. 9k–l; Methods). This analysis revealed a 
total of 9,638 distinct stimulus-responsive chromatin accessibility 
peaks (false-discovery rate (FDR) of 1%; Supplementary Table 4). 
Interestingly, we broadly observed an increase in the total num-
ber of accessible peaks, represented by the Mono-1 cluster with 
2,114 peaks gained as compared to 1,264 peaks lost (binomial 
P < 2.2 × 10−16) (Fig. 5e). The global increase in chromatin accessi-
bility upon stimulation was also corroborated by an approximately 
20% increase in the average library complexity per cell. The most 
prominent cell types that responded to stimulation included the 
two monocyte clusters and the CD4+ T cell cluster. Unexpectedly, 
we also observed 501 chromatin accessibility peaks gained in the 
HSPC cluster, and approximately 34% of these gained peaks were 
unique to HSPCs (Fig. 5f), thus uncovering an HSPC-specific sig-
nature of stimulus response. Altogether, considering the TF motif 
and peak-specific analyses, we find that HSPCs respond to stimulus 
using the NF-κB and Jun motifs to drive an HSPC-specific response. 
This finding provides support for reports suggesting that HSPCs are 
responsive to interferon-mediated immune signaling42,43, and may 
be used to further characterize the regulatory basis of interferon sig-
naling in HSPCs to facilitate discovery of chemical inhibitors that 
will enable ex vivo expansion and gene editing of hematopoietic 
stem cells44 for hematopoietic stem cell transplantation.

We further hypothesized that using this approach to uncover cell-
type-specific changes resulting from stimulation could elucidate 
mechanisms in the relevant cell types and regulatory regions encom-
passing variants implicated in genome-wide association studies45,46. 
With this in mind, we observed stimulus-responsive chromatin 
accessibility peaks near the IL10 locus in monocytes overlapping the 
pleiotropic locus for the rs302405 variant, which is associated with 
type 1 diabetes (posterior probability (PP) = 0.38), Crohn’s disease 
(PP = 0.40) and ulcerative colitis (PP = 0.41), and increased chro-
matin accessibility at variant rs2387397, which is associated with 
celiac disease (PP = 0.32), within the natural killer (NK) and T cell 
clusters (Fig. 5g). Additionally, we observed a Mono-2 stimulation-
specific peak overlapping rs6677309, which is a fine-mapped vari-
ant that is associated with multiple sclerosis (PP = 0.49), near the 
CD58 locus (Fig. 5g). Interestingly, CD58 presentation by activated 
monocytes has been shown to cause expansion of CD56+ NK cells47, 
which may promote an autoimmune response in multiple sclero-
sis48. Overall, this single experiment comprising 60,495 resting and 
75,968 stimulated cells enabled unbiased discovery of regulatory 
changes across various stages of hematopoietic differentiation and 
unbiased identification of the regulatory consequences of ex vivo 
perturbation across multiple lineages, providing new opportunities 
to better define cell types within complex tissues as well as their role 
in stem cell therapy and autoimmune disease.

Discussion
In the genomics era of cell atlases, a major goal of single-cell meth-
ods is to provide unbiased classification of cell types and the epig-
enomic, transcriptomic and proteomic features that define them49. 
We find that scATAC-seq maps can provide information-rich mea-
surements of cells (105 fragments per cell), which enable the iden-
tification of cell types and their underlying regulatory elements. 
Furthermore, previous work has suggested that activity of regula-
tory elements may be a more accurate reflection of cell potential 
and perhaps provide higher cell-type specificity than measure-
ments of gene expression17. The scATAC-seq approach described 
here produces single-cell profiles at higher throughput, improved 

yield and higher sequencing efficiency than previous scATAC-seq 
methods, providing a robust platform for identifying new cell types 
within heterogeneous tissues. We expect that the combination of 
this scATAC-seq approach with scRNA-seq profiling will provide 
a more accurate definition of cell types and that further integration 
of these data21,27,50 will enable opportunities to define mechanistic 
models of gene regulation to better understand their function.

We present a series of technological innovations leading to 
a high-throughput epigenomic profiling approach that enables 
super-Poisson loading of cells and beads into microfluidic drop-
lets. To achieve this, we have developed a computational approach 
to identify droplets with multiple barcoded beads and paired this 
approach with combinatorial indexing by barcoded transposition 
to add multiple cells to each droplet. Combining these approaches 
dramatically improves cell throughput to approximately 25,000 cells 
per well (100,000 cells per droplet device), which we expect may be 
further improved with optimizations of the approach and additional 
Tn5 barcodes. More generally, we expect this conceptual framework 
of combinatorial indexing coupled with a microfluidics device to 
be compatible with other methods for high-throughput PCR (for 
example, microwells51) and other single-cell genomics assays lever-
aging combinatorial indexing for cell barcoding52–54.

This approach allows for multiplexing of many samples in 
a single experiment. In this work, we multiplex control and per-
turbation conditions across an entire tissue, enabling us to define 
shared and cell-type-specific regulatory changes induced upon 
stimulation across diverse cell types. These advances for multiplex-
ing experiments, along with advances in high-throughput sequenc-
ing, provide new opportunities to define not only cell-type-specific 
chromatin accessibility, but also changes across diverse genetic and 
environmental conditions. As such, we expect this approach to be 
used to profile epigenomic variation across healthy individuals or 
cohorts of patients with disease to determine the functional roles 
of the regulatory elements and cell types underlying common traits 
or diseases55. Altogether, these advances enable a new era of single-
cell epigenomic studies at a massive scale, providing a powerful  
new tool to connect the vast repertoire of DNA regulatory elements 
to function.
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Methods
Statistics. All statistical tests and corresponding summary values (for example,  
P values and sample sizes) are described in the corresponding sections below and 
in the figure legends.

Cell lines. GM12878 (Coriell Institute for Medical Research) human 
lymphoblastoid cells were maintained in RPMI 1640 medium modified to include 
2 mM l-glutamine (ATCC), 15% FBS (ATCC) and 1% penicillin–streptomycin 
(Pen–Strep) (ATCC). K562 (ATCC) human chronic myelogenous leukemia cells 
were maintained in IMDM (ATCC) supplemented with 10% FBS and 1% Pen–
Strep. NIH/3T3 (ATCC) mouse embryonic fibroblast cells were maintained in 
DMEM (ATCC) supplemented with 10% calf bovine serum and 1% Pen–Strep. 
All cell lines were maintained at 37 °C and 5% CO2 at recommended densities and 
were collected at mid-log phase for all experiments. All cells in suspension were 
collected using standard cell culture procedure and adherent cells were detached 
using TrypLE Express Enzyme (Gibco). After collection, cells were washed twice 
with ice cold 1× PBS (Gibco) supplemented with 0.1% BSA (Millipore Sigma). 
Cells were then filtered with a 35-μm cell strainer (Corning) and cell viability 
and concentration were measured with Trypan blue on the TC20 Automated Cell 
Counter (Bio-Rad). Cell viability was greater than 90% for all samples. See the 
Nature Research Reporting Summary for more information.

Mouse tissues. Flash-frozen adult mouse whole-brain tissue was purchased from 
BrainBits (SKU: C57AWB). Nuclei isolation was performed using the Omni-
ATAC protocol for isolation of nuclei from frozen tissues22. Nuclei permeability 
and concentration were measured with Trypan blue on the TC20 Automated Cell 
Counter. For all samples, over 95% of the nuclei were permeable to Trypan blue, 
meaning that the nuclei isolation was successful.

Human peripheral blood and bone marrow cells. Cryopreserved human 
BMMCs, isolated bone marrow CD34+ stem/progenitor cells, PBMCs, and isolated 
peripheral blood CD4+, CD8+, CD14+, CD19+ and CD56+ cells were purchased 
from Allcells (see Supplementary Table 5 for catalog numbers and donor 
information). Cells were quickly thawed in a 37 °C water bath, rinsed with culture 
medium (IMDM medium supplemented with 10% FBS and 1% Pen–Strep) and 
then treated with 0.2 U μl−1 DNase I (Thermo Fisher Scientific) in 10 ml of culture 
medium at 37 °C for 30 min. After DNase I treatment, cells were washed once with 
medium and then twice with ice-cold 1× PBS with 0.1% BSA. Cells were then 
filtered with a 35-μm cell strainer (Corning) and cell viability and concentration 
were measured with Trypan blue on the TC20 Automated Cell Counter (Bio-Rad). 
Cell viability was greater than 80% for all samples.

Human BMMC stimulation. BMMCs were quickly thawed in a 37 °C water bath, 
rinsed with culture medium (RPMI 1640 medium supplemented with 15% FBS and 
1% Pen–Strep) and then treated with 0.2 U μl−1 DNase I in 10 ml of culture medium 
at 37 °C for 30 min. After DNase I treatment, cells were washed with medium 
once and filtered with a 35-μm cell strainer. Cell viability and concentration were 
measured with Trypan blue on the TC20 Automated Cell Counter. Cell viability 
was greater than 90% for all samples. Cells were plated at a concentration of 1 × 106 
cell per milliliter, rested at 37 °C and 5% CO2 for 1 h and then either incubated 
in serum-containing medium (RPMI 1640 medium supplemented with 15% FBS 
and 1% Pen–Strep) at 37 °C and 5% CO2 for 6 h (ex vivo culture) or treated with 
20 ng ml−1 LPS (tlrl-3pelps, Invivogen) for 6 h (LPS stimulation). After stimulation, 
cells were washed twice with ice-cold 1× PBS with 0.1% BSA and cell viability  
and concentration were measured with Trypan blue on the TC20 Automated  
Cell Counter. As a control, we processed cells immediately after counting,  
without any incubation.

Cell lysis and tagmentation. For a detailed description of tagmentation  
protocols and buffer formulations, refer to the SureCell ATAC-Seq Library Prep  
Kit (17004620, Bio-Rad) User Guide (10000106678, Bio-Rad). Collected cells  
and tagmentation buffers were chilled on ice. For cell lines, a protocol based on 
Omni-ATAC was followed22. In brief, washed and pelleted cells were lysed with 
the Omni-ATAC lysis buffer containing 0.1% NP-40, 0.1% Tween-20, 0.01% 
digitonin, 10 mM NaCl, 3 mM MgCl2 and 10 mM Tris-HCl pH 7.4 for 3 min 
on ice. The lysis buffer was diluted with ATAC-Tween buffer that contains 
0.1% Tween-20 as a detergent. Cells were collected and resuspended in Omni 
Tagmentation Mix. This mix is formulated with ATAC Tagmentation Buffer and 
ATAC Tagmentation Enzyme, both of which are included in the SureCell ATAC-
Seq Library Prep Kit. The Omni Tagmentation Mix was buffered with 1× PBS 
supplemented with 0.1% BSA. Cells were mixed and agitated on a ThermoMixer 
(5382000023, Eppendorf) for 30 min at 37 °C. Tagmented cells were kept on ice 
before encapsulation.

For PBMCs and BMMCs, lysis was performed simultaneously with 
tagmentation. Washed and pelleted cells were resuspended in Whole Cell 
Tagmentation Mix containing 0.1% Tween-20, 0.01% digitonin, 1× PBS 
supplemented with 0.1% BSA, ATAC Tagmentation Buffer and ATAC 
Tagmentation Enzyme. Cells were tagmented using a thermal protocol and 
maintained as described in the Omni-ATAC protocol above.

For mouse tissues, nuclei were washed with ATAC-Tween buffer containing 
0.1% Tween-20, 10 mM NaCl, 3 mM MgCl2 and 10 mM Tris-HCl pH7.4 and then 
processed according to the whole-cell protocol above.

Optimized Tn5 concentration. To test whether the concentrated Tn5 (part of 
the SureCell ATAC-Seq Library Prep Kit, 17004620, Bio-Rad) performed better 
than the standard commercial Tn5 enzyme (TDE1, 15027865, Illumina), we 
prepared dscATAC-seq libraries for K562 cells using different amounts of TDE1 
and our new concentrated Tn5. K562 cells were prepared and lysed as specified 
in the Omni-ATAC protocol described above. Cells were then resuspended in 
Omni Tagmentation Mix containing ATAC Tagmentation Buffer and either (1) 
different amounts of TDE1 (2.5, 7.5 or 10 μl in a 50 μl reaction; Fig. 1b) or (2) the 
concentrated Tn5 (2.5 μl in a 50 μl reaction, three replicates; Fig. 1b). Cells were 
mixed and agitated on a ThermoMixer for 30 min at 37 °C. Tagmented cells were 
kept on ice before encapsulation and libraries were prepared using our standard 
method as described below. The top 500 cells sorted by library complexity are 
shown for all comparisons.

Droplet library preparation and sequencing. For a detailed protocol and 
complete formulations, refer to the SureCell ATAC-Seq Library Prep Kit User 
Guide (10000106678, Bio-Rad). Tagmented cells or nuclei were loaded onto a 
ddSEQ Single-Cell Isolator (12004336, Bio-Rad). scATAC-seq libraries were 
prepared using the SureCell ATAC-Seq Library Prep Kit (17004620, Bio-Rad) and 
SureCell ATAC-Seq Index Kit (12009360, Bio-Rad). Bead barcoding and sample 
indexing were performed in a C1000 Touch thermal cycler with a 96-Deep Well 
Reaction Module (1851197, Bio-Rad); PCR conditions were as follows: 37 °C for 
30 min, 85 °C for 10 min, 72 °C for 5 min, 98 °C for 30 s, eight cycles of 98 °C for 
10 s, 55 °C for 30 s and 72 °C for 60 s, and a single 72 °C extension for 5 min to 
finish. Emulsions were broken and products were cleaned up using Ampure XP 
beads (A63880, Beckman Coulter). Barcoded amplicons were further amplified 
using a C1000 Touch thermal cycler with a 96-Deep Well Reaction Module; PCR 
conditions were as follows: 98 °C for 30 s, seven to nine cycles (cycle number 
depending on the cell input, Table 21 of the User Guide) of 98 °C for 10 s, 55 °C 
for 30 s and 72 °C for 60 s, and a single 72 °C extension for 5 min to finish. PCR 
products were purified using Ampure XP beads and quantified on an Agilent 
Bioanalyzer (G2939BA, Agilent) using the High-Sensitivity DNA kit (5067-
4626, Agilent). Libraries were loaded at 1.5 pM on a NextSeq 550 (SY-415-1002, 
Illumina) using the NextSeq High Output Kit (150 cycles; 20024907, Illumina) and 
sequencing was performed using the following read protocol: read 1, 118 cycles; 
i7 index read, 8 cycles; read 2, 40 cycles. A custom sequencing primer (part of the 
SureCell ATAC-Seq Library Prep Kit) is required for read 1.

dsciATAC-seq methods. Assembly of indexed Tn5 transposome complexes. To 
generate indexed Tn5 transposome complexes, we modified the Illumina Nextera 
Read 1 Adapter to contain a 6-nucleotide barcode (96 distinct barcodes; see 
Supplementary Table 6 for barcode sequences). Each indexed oligonucleotide was 
mixed with the Illumina Nextera Read 2 Adapter and annealed to a 15-nucleotide 
mosaic-end complementary oligonucleotide (5′ phosphorylated and 3′ dideoxy-C) 
(Supplementary Table 6). All oligonucleotides were purified by high-performance 
liquid chromatography (IDT). For the annealing reaction, oligonucleotides were 
mixed at a 1:1:2 molar ratio (read 1:read 2:complementary mosaic end) at 100 μM 
final concentration in 50mM NaCl. The mixture was incubated at 85 °C, ramped 
down to 20 °C at a rate of −1 °C min−1 and then held at 20 °C for 2 min. After 
being diluted 1:1 in glycerol, the annealed oligonucleotide mixture was mixed 1:1 
with 14.8 μM purified Tn5 (Tn5 was purified as previously described38). The Tn5–
oligonucleotide mixture was incubated for 30 min at room temperature and then 
kept at −20 °C before the tagmentation reactions.

Species mixing controls. Human and mouse cell lines were processed and lysed 
using the Omni-ATAC-seq protocol as described above. For the 24-plex control 
experiment in Fig. 3 and Supplementary Fig. 6, K562 and NIH/3T3 cells were 
mixed at a 1:1 ratio and tagmented with Tn5 loaded with indexed oligonucleotides 
1–3, 13–15, 25–27, 37–39, 49–51, 61–63, 73–75 and 85–87 (Supplementary Table 6)  
in 50-μl reactions (10 μl of indexed Tn5 per reaction) with 25,000 cells each. Cell 
line tagmentation buffer components and reaction conditions were the same as 
described above. After the tagmentation reaction, all cells were pooled, washed 
with tagmentation buffer without Tn5 and processed using our standard protocol 
for droplet library preparation and sequencing. Different cell numbers were used as 
input, as indicated in Fig. 3 and Supplementary Fig. 6.

For the 48-plex control experiment in Supplementary Fig. 6, K562 and 
NIH/3T3 cells were mixed at a 1:1 ratio and tagmented with Tn5 loaded with 
indexed oligonucleotides 1–6, 13–18, 25–30, 37–42, 49–54, 61–66, 73–78 and 
85–90 (Supplementary Table 6) in 50-μl reactions (10 μl of indexed Tn5 per 
reaction) with 25,000 cells each. Cell line tagmentation buffer components and 
reaction conditions were the same as described above. After the tagmentation 
reaction, all cells were pooled, washed with tagmentation buffer without Tn5 
and processed using our standard protocol for droplet library preparation 
and sequencing. Different cell numbers were used as input, as indicated in 
Supplementary Fig. 6.
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Human BMMC stimulations. BMMCs from two donors were stimulated and 
washed as described above. For the experiment in Figs. 4 and 5, BMMCs were 
tagmented with Tn5 loaded with indexed oligonucleotides 1–96 in 20-μl reactions 
(4 μl of indexed Tn5 per reaction) with 8,000 cells each (control, ex vivo culture 
and LPS stimulation as described above). BMMC tagmentation buffer components 
and reaction conditions were the same as described above. After the tagmentation 
reaction, all cells were pooled, washed with tagmentation buffer without Tn5 
and processed using our standard protocol for droplet library preparation and 
sequencing. Pooled cells were split into 16 different samples for droplet library 
preparation, with varying cell inputs (20,000, 40,000 or 80,000 cells). After 
sequencing, data from all 16 samples were merged for the analyses.

Sequencing data for the dsciATAC-seq experiments were processed with BAP 
as described below using the ‘--tn5-aware’ flag that inhibits cell merging across 
different Tn5 barcodes.

Bioinformatics preprocessing. Raw read processing. Per-read bead barcodes 
were parsed and trimmed using UMI-TOOLs (https://github.com/CGATOxford/
UMI-tools)56, and the remaining read fragments were aligned using BWA 
(http://bio-bwa.sourceforge.net/) on the Illumina BaseSpace online application. 
Constitutive elements of the bead barcodes were assigned to the closest known 
sequence, allowing for up to one mismatch per 6-mer or 7-mer (mean > 99% 
parsing efficiency across experiments). For the dsciATAC-seq experiments, bead 
barcodes were parsed using a custom Python script aware of the 96 possible Tn5 
barcodes. All experiments were aligned to the hg19 or mm10 reference genome (or 
a combined reference genome in the case of species mixing experiments).

To identify systematic biases (i.e. reads aligning to an inordinately large 
number of barcodes) and deduplicate reads with barcode awareness, and to 
perform bead merging (see below), we developed the BAP tool. This software uses 
as input a .bam file for a given experiment with a bead barcode identifier indicated 
by a SAM tag. We generalized this preprocessing pipeline to handle other datasets 
(Fluidigm C1 and sciATAC-seq) to enable consistent comparisons across various 
technologies (Fig. 1). For additional details regarding this pipeline, including 
dynamic inference of per-library thresholds, see the Supplementary Note.

Identification of multiple beads per droplet. An integral part of our technique relies 
on the robust identification of pairs of bead barcodes that share exact insertions at 
a rate that exceeds what may be expected by chance. We note that our procedure 
readily enables multiple beads per droplet (Supplementary Fig. 2). First, highly 
abundant barcodes were detected in the experiment by quantifying each unique 
barcode sequence among nuclear-mapping reads. Our knee-calling algorithm then 
established a per-experiment bead threshold. Next, sequencing reads that were 
assigned to a bead barcode and passed filtering were deduplicated using the insert 
positions of the paired-end reads (as previously implemented in Picard tools).

After initial deduplication, we further removed paired-end reads that mapped 
to more than six bead barcodes, reasoning that these represented technical 
confounders. Next, for each pair of bead barcodes that passed the bead filtering 
step, we computed the Jaccard index over the insertion positions of reads, 
providing a measure of how similar the Tn5 insertions were for any pair of bead 
barcodes. From these pairwise Jaccard index statistics, we performed a second knee 
call to determine pairs that were likely to have originated from the same droplet 
(Supplementary Fig. 2f). Finally, to assign droplet-level barcodes, we looped over 
the original bead barcodes in order of their original nuclear read abundance. For 
a given bead barcode, if it paired with any other bead barcodes that passed the 
pairwise knee, those bead barcodes were ‘merged’ into one droplet barcode. This 
iteration repeats until all bead barcodes have been assigned to precisely one droplet 
barcode. To facilitate comparisons without droplet merging (Supplementary Fig. 
2n,o), our pipeline includes a ‘--one-to-one’ flag, which maps one bead barcode 
onto one droplet barcode; this option was employed primarily to process other 
scATAC-seq datasets that would not have beads requiring merging. Additional 
details regarding this procedure and comparisons in Supplementary Fig. 2k are 
discussed in the Supplementary Note.

Species mixing analysis. We carried out the same quantification procedure for all 
species mixing datasets analyzed in this work. Namely, reads were mapped to a 
hybrid hg19–mm10 reference genome using BWA. Cells were identified using 
BAP knee calling (described above). The output of this pipeline yields the number 
of unique nuclear reads mapping to the mouse and human genomes, which were 
compared between each cell. We further excluded cells with fewer than 1,000 reads 
mapping to either the human or mouse genome and identified collisions as those 
that had less than 10× enrichment over the minor genome. The overall collision 
rate is reported as the number of annotated collision cells over the total number of 
cells compared (mouse + human + collisions).

Peak calling. For each scATAC-seq experimental sample, chromatin accessible 
summits were called using MACS2 callpeak with custom parameters that have been 
described previously17. To generate a non-overlapping set of peaks per analysis, 
we first extended summits of each experiment to 500-bp windows (±250 bp). We 
combined these 500-bp peaks, ranked them by their summit significance value and 
retained specific non-overlapping peaks on the basis of this ordering. We further 

removed peaks that overlapped the ENCODE blacklist and a custom mitochondrial 
blacklist generated by aligning a synthetic mitochondrial DNA genome to the 
nuclear genome (https://github.com/buenrostrolab/mitoblacklist).

Library complexity estimation. Per-cell library complexities were estimated using 
the Lander–Waterman equation57 with a custom R function translated from a 
previously established Java function implemented in Picard tools. Per-cell counts 
of the total number of mapped nuclear reads that passed quality filters and 
the number of unique nuclear reads served as inputs. Thus, library complexity 
represents a metric that estimates the total number of unique nuclear reads from 
the cell independently of sequencing depth.

Comparison to public datasets. To benchmark the dscATAC-seq platform 
against existing datasets, we downloaded raw sequencing data (.fastq format) 
for GM12878 cells from three different combinatorial indexing scATAC-seq 
methods19,24,25 and 384 cells processed with the Fluidigm C1 (ref. 18) from GEO. All 
datasets were processed using the same pipeline, which included BWA alignment 
and downstream processing with BAP using the ‘--one-to-one’ flag that skips 
bead merging. We note that, in all three combinatorial indexing scATAC-seq 
experiments, GM12878 cells were mixed with mouse cells. As such, we compared 
only annotated human cells (>9:1 ratio of human:mouse cells) from these 
experiments for downstream analysis.

To determine the correlation between scATAC-seq experiments, we used a 
merged peak set comprising 175,581 combined DNase–seq hypersensitivity peaks 
from GM12878 and K562 made available through the ENCODE Project. The sum 
of single cells (agnostic to cell ID) was compared against bulk DNase–seq profiles 
generated from ENCODE and Omni-ATAC22. To score the fraction of reads in 
peaks across single-cell experiments, we used only the GM12878 DNase–seq peak 
set (124,321 peaks) to ensure that peak selection did not bias our quantification 
and comparison of technologies.

Validation of multiple beads per droplet inference. To validate our ability to 
merge cells marked by multiple droplet beads, we introduced a diverse library of 
random oligonucleotides (14 nucleotides long; see Supplementary Table 6 for the 
full sequence) to our microfluidic reaction (Supplementary Fig. 2). Human PBMCs 
were processed with this library of random oligonucleotides at bead concentrations 
of 200, 800 and 5,000 beads per microliter, spanning the ranges used for the data 
presented in this work. The random oligonucleotides were spiked into the cells at 
a final concentration of 5 nM after the tagmentation reaction, and samples were 
processed and sequenced using our standard protocol (described above). Among 
pairs of beads that were merged, the average number of oligonucleotides observed 
per bead ranged from 792 to 1,979 per experiment.

We reasoned that bead barcodes sharing a noticeable overlap of these 
oligonucleotides (Supplementary Fig. 2a,b) would be barcodes from two beads 
contained in the same droplet. We identified reads containing our random 
oligonucleotide by first identifying the 15-bp constant sequence and subsequently 
parsing the 14 bases downstream of the constant sequence (Supplementary Table 6).  
For each experiment, we called a knee on the bead-barcode pairwise Jaccard 
indices (for each observed 14-base oligonucleotide) and computed the overlap 
of random sequences observed (Supplementary Fig. 2e) for barcodes passing the 
nuclear read knee. Pairs of bead barcodes that passed the oligonucleotide-overlap 
knee were annotated as true positives.

Next, we computed our BAP metric in a pairwise manner for each bead 
barcode using the overlap of pairs of inserts over each fragment (or paired-end 
read). This produces a metric for all pairs of bead barcodes with at least 500 
unique nuclear reads observed per barcode (Supplementary Fig. 2f). Using the 
true positives defined from the random oligonucleotide data and a continuous 
overlap metric from BAP, we computed precision-recall and receiver-operating 
curves (AUROC = 1.000 and AUPRC = 0.997; Supplementary Fig. 2k). We further 
compared other possible metrics for bead merging, including Pearson and 
Spearman correlation and a Jaccard index over reads in peaks, but found that our 
approach was the most robust and specific (Supplementary Fig. 2k). We note that 
the library of random oligonucleotides provides a completely orthogonal measure of 
bead overlap as compared to the nuclear DNA fragments used in the BAP algorithm.

Theory of beads and droplet concentrations. In this setting, we are interested 
in estimating the number of beads per droplet at variable bead concentrations 
using observed data. Given that our observed data do not yield any droplets with 
0 beads (cells not captured) and that any measurement with greater than six beads 
cannot be relied on (six is the physical limit for beads; thus, observed values likely 
reflect merged droplets), the observed number of beads per droplet is modeled by a 
double-truncated Poisson distribution. The probability density function of a double-
truncated Poisson distribution for a single observation can be written as follows.
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Here c1 is our lower bound (1 in our case) of the empirical data and c2 is the 
upper bound (in our case 6) for observed numbers of beads per droplet y. Let 
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∈ …i n{1, 2, , }. Then, we observe n cells and yi denotes the number of beads per 
drop for cell i. The log likelihood (l) of observing a value can thus be computed  
as follows.
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Here, a closed-form solution of λ (parameter of the Poisson distribution indicating 
the mean number of beads per cell) is impossible. Thus, we estimate the value using 
the optim() function in R, providing the maximum-likelihood estimate (MLE).

Given the MLE estimate for λ, we can calculate the proportion of droplets with 
0 beads p using the Poisson probability density function

λ= −p exp{ }

We can then approximate the number of droplets with a barcode as 1 − p. Empirical 
values of λ were determined using GM12878 and mouse brain data at different 
bead concentrations (800 and 5,000 beads per microliter) and were found to be 
robust across the various datasets analyzed.

De novo k-mer clustering. Here we computed bias-corrected deviation z scores 
for K k-mers and a set of S samples (dscATAC-seq cells) with P peaks computed 
via the chromVAR methodology. Our implementation utilizes a binarized matrix 
M (dimensions P by K) in which mi,k is 1 if k-mer k is present in peak i and 0 
otherwise on the basis of the reference genome annotation. For all applications, we 
used k = 7, resulting in K = 8,192 (47/2) 7-mers. We note that the division by two is 
to account for reverse-complement k-mers that would be identical as both strands 
of the reference genome are considered when building M. Using the matrix of 
fragment counts in peaks X (dimensions P by S), where xi,j represents the number 
of fragments from peak i in sample j, we produce a deviation score matrix Z of 
dimensions S samples (rows) and K 7-mers (columns).

The matrix Z is computed using an expectation of peak accessibility based on 
technical confounders present in assays (differential PCR amplification or variable 
Tn5 tagmentation conditions). This is achieved by generating 50 background 
peaks intrinsic to the set of epigenetic data being examined. The full details 
describing the computation of Z have been previously described in the chromVAR 
manuscript26. Finally, as many of the 8,192 7-mers are highly correlated, we 
then use the top principal components of the matrix Z as input for downstream 
processes, including the Louvain clustering and t-SNE embedding.

Cell-type-specific promoter-region chromatin accessibility scores and 
regulatory region analysis in mouse brain. To define cluster-specific regulatory 
elements and promoter region chromatin accessibility scores, we defined pseudo-
bulk cell types by aggregating the counts per cell over each of the annotated 
cluster definitions. First, the peak × cell-type counts matrix (X) was count-per-
million normalized, and peaks with overall mean counts per million > 1 were 
retained. This filtered peak × cell-type counts matrix was then z score transformed. 
Explicitly, for cell type j and peak i, our transformed statistic was
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We identified 135,737 cell-type-specific chromatin accessibility peaks with zi,j > 3 
in at least one cell type (some value j), which were assigned to clusters on the basis 
of maximum z score value (argmax j zi,j). Peaks were separated and clustered on the 
basis of the population with the maximum value in Fig. 2e. An identical procedure 
was used for the promoter region chromatin accessibility scores × cell-type counts 
matrix starting with the annotated set of 310 marker genes from a previous scRNA-
seq analysis of mouse brain29, resulting in 262 genes for which the zi,j > 3 criterion 
was met for the promoter gene scores (Fig. 2d).

Promoter region chromatin accessibility scores. To annotate our de novo clusters 
from the whole mouse brain, we computed per-cluster promoter region chromatin 
accessibility scores representing a weighted sum of chromatin accessibility around 
the TSS of each gene in our reference data. Specifically, for gene g and cluster i, we 
define a chromatin accessibility score gi from the following.

∑=
∈

− ∕g x e*i
j J

i j
d k

,
j

Here xi,j represents the counts-per-million normalized chromatin accessibility count 
for cluster i and chromatin accessibility peak j. Accessibility peaks used per gene J 
were restricted to those within 100,000 bp of a corresponding TSS, and dj represents 
the distance (in base pairs) between the TSS and the center of peak j. The scaling 
constant, k, was fixed to 5,000 for all chromatin accessibility score computations.

Mouse brain cluster annotation. To annotate the dscATAC-seq mouse brain 
clusters in a data-driven manner based on the molecular signature of the distinct 

cell types in the brain, we used a resource containing scRNA-seq data for 690,000 
individual cells sampled from nine regions of the adult mouse brain29, which 
identified 565 subclusters within the broad classes of cell types in the brain. 
The list of cell types includes neurons, astrocytes, microglia, oligodendrocytes, 
polydendrocytes and components of the vasculature. We note that many of these 
subclusters are from analysis of specific brain regions and further reclustering 
within broadly defined clusters, leading to a large number of clusters. We use 
this data resource to (1) assign each one of our clusters to one of the broad cell 
classes identified in their study and (2) further refine the annotation by identifying 
which gene expression signature (within the 565 subclusters) provides an optimal 
match to each one of our dscATAC-seq clusters. To do this, we first obtained the 
union of the class_marker and type_marker genes identified in the scRNA-seq 
study (total of 310 unique genes)29. We then calculated the Spearman correlation 
coefficient between the per-cluster promoter-region chromatin accessibility 
scores (27 clusters) and the aggregated scRNA-seq signal per cluster (565 clusters) 
at those 310 marker genes. We then employed the Gale–Shipley algorithm to 
assign an optimal matching of scRNA-seq clusters to our scATAC-seq clusters 
(Supplementary Table 2). Here, the Gale–Shipley algorithm assigns pairs that 
maximize the global utility of the matches, noting our utility function was 
Spearman correlation. To classify the 27 dscATAC-seq clusters, we used the  
broad class assignment of the most correlated scRNA-seq cluster, except for the 
‘Neuron’ class, which was further divided into excitatory and inhibitory neurons  
on the basis of the annotation of Slc17a7 and Gad1, respectively. We then 
performed the same computational approach using another scRNA-seq  
dataset with 262 clusters30 to validate the robustness of our approach 
(Supplementary Table 2). When displaying the overall correlation structure  
(Fig. 2c), we restricted the scRNA-seq clusters to those that had one or  
more class matches to the scATAC-seq data (500 of 565 clusters).

Bulk-guided clustering. Bulk-guided clustering of single cells (Fig. 4) was 
performed as previously described21. In brief, a matched peak set (k = 156,311 
peaks) was used for both BMMC dsciATAC-seq (n = 136,463 single cells) and 
bulk ATAC-seq profiles previously generated for sorted hematopoietic cell 
populations (16 cell types)17,21,46. Principal-component analysis was first run 
on quantile-normalized bulk ATAC-seq data generating principal components 
capturing variation across cell types. Single cells were then projected in the space 
of these bulk-trained principal components by multiplying the scATAC-seq reads 
in the peaks matrix with the matrix of peaks with principal-component loading 
coefficients to yield a matrix of single-cell projection scores (cells × principal 
components). The derived single-cell scores were then scaled and centered, and 
the corresponding single-cell data were visualized using t-SNE. Predicted labels 
for single cells were obtained by correlating projected single-cell scores with bulk 
principal-component scores and choosing the most correlated bulk cell type on 
the basis of the Pearson correlation coefficient. To define clusters for the control 
(unstimulated) BMMC dataset (Fig. 4c), Louvain clustering was performed  
using the igraph package where the 20 nearest neighbors per cell were used  
for embedding.

Single-cell classification. To assign the most similar clusters generated from the 
15 clusters of the control (unstimulated) BMMC dataset (Fig. 4c) to the additional 
datasets (Fig. 4e,f), the medoids of each per-cluster principal component were 
determined over all cells assigned from the Louvain clustering at baseline. Next, 
for every cell in each of the new datasets (that is, the FACS-sorted populations and 
the bead-isolated populations), we assigned a reference cluster on the basis of the 
minimum Euclidean distance between each cell’s principal components and the 
medoids of the clusters.

Analysis of differential TF motifs. To compute differential TF scores under 
normal and stimulation conditions, we determine the 20 nearest stimulus-
condition neighbors for each single cell in the resting condition using the bulk-
guided principal-component scores and a Pearson correlation distance metric. To 
calculate differential TF motifs, we subtract the mean of the 20 stimulus cells by 
the TF score for each cell in the normal condition. Finally, to suppress noise in the 
comparison, we smooth the differential TFs by taking the mean of the 20 nearest 
neighbors in the control condition. Again, the nearest neighbors were calculated 
using the bulk-guided principal-component scores, with Pearson correlation as a 
distance metric.

Differential peak identification in bone marrow stimulation. We devised a 
permutation test that assessed whether the proportion of cells with an accessibility 
element was different between the stimulated and resting conditions, controlling 
for overall differences in accessibility (using measures at promoters). First, we 
filtered our consensus peak set such that a given peak was accessible in at least 1% 
of cells irrespective of stimulation or resting condition. Then, for an individual 
regulatory element i, we determined the proportion of cells in the resting (Pr) and 
stimulated (Ps) conditions that observed one or more fragments overlapping the 
accessibility peak. Next, we computed the proportion of all promoters annotated 
in our dataset for both resting ( ′Pr) and stimulated ( ′Ps). Our observed differential 
statistic thus is given by
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To determine statistical significance, we permuted the stimulation and resting 
labels 1,000 times to generate a permuted distribution. We observed the 
corresponding z statistic (Supplementary Fig. 9l) to be centered with a largely 
Gaussian distribution. After converting these z statistics to P values using a 
standard normal distribution, we computed a per-cluster FDR and established 
a significance threshold of 1% uniformly across clusters. We further computed 
an effect size of the difference between stimulated and resting, given simply by 
Ps −Pr. We summarized the differential association in Fig. 5g where the red bars 
(FDR < 10−5) and the pink bar (FDR < 10−2) represent the statistical significance of 
the change in chromatin accessibility for each cell-type cluster.

Overlap with fine-mapped GWAS SNPs. To identify regulatory regions affected 
by our stimulation conditions that may be relevant for human disease, we 
overlapped differential peaks identified per cell type with SNPs identified through 
genetic fine-mapping studies of 21 immune traits as previously described45. 
Specifically, we downloaded the per-SNP metadata available online (http://pubs.
broadinstitute.org/pubs/finemapping/dataportal.php) and intersected differentially 
accessible peaks with annotated positions of fine-mapped variants with PP > 0.3 
computed by PICS45 across all reported traits.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing files and processed files for all data generated in this study 
were deposited at Gene Expression Omnibus (GEO) under accession number 
GSE123581. UCSC genome browser tracks for the datasets generated in this 
study are available from the following websites: mouse brain, https://s3.us-east-2.
amazonaws.com/jasonbuenrostro/2018_mouse_brain/hub.txt; BMMC dsciATAC-
seq, https://s3.us-east-2.amazonaws.com/jasonbuenrostro/2018_BM_htsci/hub.
txt; stimulated BMMC dsciATAC-seq, https://s3.us-east-2.amazonaws.com/
jasonbuenrostro/2018_BM_htsci_stim/hub.txt.

Code availability
Complete code and documentation for the BAP software suite developed in this 
study is available at https://github.com/buenrostrolab/bap. Scripts corresponding 
to the analyses contained in this paper are provided at https://github.com/
buenrostrolab/dscATAC_analysis_code.
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