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T cells create vast amounts of diversity in the genes that 
encode their T cell receptors (TCRs), which enables individual 
clones to recognize specific peptide–major histocompatibility 
complex (MHC) ligands. Here we combined sequencing of the 
TCR-encoding genes with assay for transposase-accessible 
chromatin with sequencing (ATAC-seq) analysis at the single-
cell level to provide information on the TCR specificity and 
epigenomic state of individual T cells. By using this approach, 
termed transcript-indexed ATAC-seq (T-ATAC-seq), we iden-
tified epigenomic signatures in immortalized leukemic T cells, 
primary human T cells from healthy volunteers and primary 
leukemic T cells from patient samples. In peripheral blood 
CD4+ T cells from healthy individuals, we identified cis and 
trans regulators of naive and memory T cell states and found 
substantial heterogeneity in surface-marker-defined T cell 
populations. In patients with a leukemic form of  cutaneous  
T cell lymphoma, T-ATAC-seq enabled identification of leu-
kemic and nonleukemic regulatory pathways in T cells from 
the same individual by allowing separation of the signals that 
arose from the malignant clone from the background T cell 
noise. Thus, T-ATAC-seq is a new tool that enables analysis of 
epigenomic landscapes in clonal T cells and should be valuable 
for studies of T cell malignancy, immunity and immunotherapy.

T lymphocytes recognize self and foreign antigens and are the cen-
tral drivers of regulatory and effector immune responses. Each T cell 
expresses a TCR that recognizes antigens in the context of MHC mol-
ecules displayed on the surface of antigen-presenting or pathogen- 
infected cells. The major TCR species is composed of α​- and β​-sub-
units that are encoded by genes generated due to somatic V(D)J 
recombination, which results in the production of a diverse reper-
toire of antigen-reactive T cells, with up to a possible 1014 unique 
heterodimers in each individual1. As a result of antigen-specific or 
malignant clonal expansion, the TCR also serves as a faithful identi-
fier of its clonal origin, as T cells expressing identical TCR-α​β​ pairs 
must almost invariably arise from a common cellular ancestor. The 
specific pairing of a TCR-α​ subunit and a TCR-β​ subunit from one 

cell is necessary to recapitulate its antigen specificity and is criti-
cal for weaponizing or disarming an immune response for immu-
notherapy. Therefore, the identification of TCR-α​β​-encoding  
sequences is critical to understanding the identity of single T cells, 
and methods that pair TCR-α​β​-encoding sequences with cell and 
activation states may uncover clonal gene regulatory pathways 
missed by ensemble measurements.

Recent advances in genome sequencing technologies have 
enabled single-cell gene expression and epigenetic measurements 
and have revealed variability in immune-cell development and 
responsiveness2–5. Our groups recently developed methods to effi-
ciently amplify and sequence the TRA and TRB loci (which encode 
the TCR-α​ and TCR-β​ chains, respectively) from single T cells6 
(termed TCR-seq) and to measure epigenetic changes genome wide 
in single cells. The latter method, termed single-cell ATAC-seq 
(scATAC-seq), enables measurement of regulatory DNA elements 
by direct transposition of sequencing adaptors into regions of acces-
sible chromatin7–9. Unlike methods to measure the transcriptome in 
single cells, scATAC-seq identifies cell-to-cell variation in cis regu-
latory elements and trans factors that drive epigenetic cell states. 
Moreover, analysis of single-cell epigenomic profiles can be used 
to reveal significant variability within cell-surface-marker-defined 
populations and the existence of cell states obscured by ensemble 
measurements10.

Here we combined these two technologies to produce a method 
that allows one to study both the epigenetic landscape and the T 
cell specificity simultaneously at the single-cell level. This two-way 
analysis may facilitate discovery of antigens that drive a certain T 
cell fate, or conversely, cis and trans regulators that drive the expan-
sion of a T cell clone. We refer to this method as T-ATAC-seq. The 
T-ATAC-seq experimental pipeline integrates scATAC-seq with tar-
geted TCR-seq in the same single cell, followed by high-throughput  
sequencing and computational integration of both datasets. To 
demonstrate the performance and utility of T-ATAC-seq, we per-
formed this method on 1,344 human T cells that were sorted using 
standard subset-specific cell surface markers, and we integrated the 
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analysis of regulatory landscapes with TCR identity. T-ATAC-seq 
in peripheral blood CD4+ T cells from healthy volunteers revealed 
epigenomic signatures and single-cell variability of naive and mem-
ory CD4+ T cells. Notably, unbiased single-cell analysis identified 
divergent chromatin states within cell-surface-marker-defined 
T cell subtypes. We extended the use of this method to clinical 
samples from patients with T cell leukemia. T-ATAC-seq enabled 
the identification of cancer-clone-specific epigenomic signatures, 
which were not apparent from ensemble measurements. These data 
demonstrate the utility of T-ATAC-seq as a new tool for single-cell 
epigenomic characterization of T cells for both research and clinical 
applications.

Results
Performance of T-ATAC-seq in human immortalized T cells. 
We implemented T-ATAC-seq using an automated microfluidic 
platform (C1; Fluidigm; Fig.  1a and Supplementary Fig.  1a). For 
this approach, single cells were first individually captured on the 
integrated fluidics circuit (IFC) in single-cell chambers and then 
subjected to cell lysis and DNA transposition with the prokaryotic 
Tn5 enzyme, which was loaded with sequencing adapters. After 
transposition of accessible chromatin, Tn5 was released from DNA 
fragments, and the TRA and TRB RNAs within each chamber were 
subjected to reverse transcription (RT) using primers targeting the 
constant-region-encoding sequences in TRA and TRB. Immediately 
after RT, the 5′​ ends of the ATAC-seq fragments were extended, and 
all of the chamber contents were amplified by PCR. TCR-encoding 
fragments were amplified using primers targeting the sequences 
encoding the TCR constant and variable regions in TRA and TRB. 
Single-cell libraries were then collected, and the TRA and TRB, or 
the ATAC, amplicons were further amplified with cell-identifying 
barcoded primers, pooled and sequenced on a high-throughput 
sequencing instrument.

To assess the performance of this method, we performed 
T-ATAC-seq analysis in 288 single human Jurkat leukemia cells 
(Supplementary Fig.  1b). Combined ATAC-seq and TCR-seq (for 
either TRA or TRB) profiles were obtained in 93.9% of captured live 
cells, and 80% of live cells produced ATAC-seq and a paired TRA 
and TRB sequence (Fig.  1b). Next we evaluated the quantity and 
quality of the ATAC-seq data. Microfluidic chambers that produced 
low-quality data (i.e., those that corresponded to the data from 
empty chambers or dead-cell captures) were excluded from further 
analysis using cut-offs for unique nuclear fragment number and 
fraction of fragments in accessible chromatin sites, as previously 
described (Supplementary Fig.  1c,d and Methods)8–11. Chambers 
passing this filter yielded an average of 8.5 ×​ 103 fragments that 
mapped to the nuclear genome, and approximately 38% of frag-
ments were within peaks present in ensemble Jurkat ATAC-seq pro-
files (Fig. 1c). T-ATAC-seq data recapitulated several characteristics 
of ensemble ATAC-seq, including fragment-length periodicity and 
enrichment of fragments at transcription start sites (TSSs) (Fig. 1d 
and Supplementary Fig. 1c). Notably, T-ATAC-seq data quality in 
single cells were similar to those derived from scATAC-seq alone 
(Fig. 1d), demonstrating that incorporating targeted RT and PCR 
of the TCR-encoding transcripts did not affect the quality of the 
ATAC-seq data.

We next assessed the performance of T-ATAC-seq in obtaining 
TRA and TRB sequences from single cells. T-ATAC-seq TRA- and 
TRB-specific primers were designed to amplify the complementarity- 
determining region 3 (CDR3) in the TRA and TRB loci. TRA and 
TRB sequence quality was assessed by TRA and TRB sequence read 
number and single-cell clonal dominance, as previously described6, 
and only chambers that generated high-quality TRA and TRB 
sequences were included in downstream analyses. On average, 
we obtained 2.7 ×​ 103 reads for TRA and 4.2 ×​ 103 reads for TRB 
in chambers that passed the quality-control filters (Fig.  1e and 

Supplementary Fig. 1d,e). In chambers that produced either ATAC-
seq or TCR-seq reads, we obtained a TRA sequence in 89.9% of cells 
(249/277) and a TRB sequence in 79.1% of cells (219/277), which 
resulted in paired TRA and TRB sequences in 71% of cells (196/277) 
(Supplementary Fig.  1f). These efficiencies were similar to those 
from previous techniques that obtained TCR-encoding sequences 
from single cells6,12,13. The TRA and TRB sequences in all of the cells 
that passed the filter correctly identified the Jurkat TCR heterodi-
mer as TRBV12-3–TRBJ1-2 and TRAV8-4–TRAJ3 (Fig. 1f). Finally, 
species mixing experiments using mouse cells (58α​β​-negative  T 
cell hybridoma cells that were transduced with sequences encoding 
a mouse TCR; labeled with calcein red) and human T cells (Jurkat; 
labeled with calcein green) confirmed that T-ATAC-seq correctly 
paired cells visualized on the microfluidic chip with species-specific 
open chromatin, and TRA and TRB sequences (Fig.  1g). Human 
ATAC-seq fragments were always paired with human TCRs, and 
mouse ATAC-seq fragments with mouse TCRs, with the exception 
of one doublet out of 94 cells. In summary, T-ATAC-seq efficiently 
and accurately pairs TRA and TRB sequence identity with chroma-
tin accessibility in single T cells.

Single-cell epigenomic analysis using T-ATAC-seq. Single-cell 
epigenomic data can be assessed at the level of regulatory DNA ele-
ments or of transcription factor (TF) activity across many loci, as 
computed from observed versus expected fragments in TF-binding 
sites in each single cell, as previously described8,11,14. The perfor-
mance of T-ATAC-seq was comparable to that of scATAC-seq in 
both measurements. For the first kind of measurement (level of reg-
ulatory DNA elements), aggregate T-ATAC-seq profiles from 231 
single cells closely reproduced population measurements profiled 
by DNase I hypersensitivity sequencing (DHS-seq) and ensemble 
ATAC-seq generated from 107 or 5 ×​ 104 cells, respectively (Fig. 2a). 
Single-cell profiles were strongly enriched for fragments within 
open chromatin sites present in ensemble profiles (Fig. 2b). For the 
second kind of measurement, TF motif activity in Jurkat cells that 
were identified using T-ATAC-seq or scATAC-seq yielded similar 
profiles (Supplementary Fig. 2a). Jurkat cells showed high accessi-
bility at DNA regions that contained motifs for members of the T 
cell factor (TCF) and lymphoid enhancer-binding factor (LEF) fam-
ily, including TCF7L2 and LEF1, and for the runt-related TF family 
members RUNX2 and RUNX3, as compared to single-cell profiles 
from H1 embryonic stem cells (ESCs), GM12878 B lymphoblastoid 
cells and K562 myeloid leukemia cells (Fig. 2c and Supplementary 
Fig. 2b,c). It is of note that TF motif enrichments (hereafter referred 
to as TF deviation scores) reflect the activity of all TFs with simi-
lar DNA-binding motifs, rather than any particular TF. Therefore, 
the high deviation scores of TCF7L2 in Jurkat cells may reflect the 
function of additional TCF family members, such as TCF1, which 
has previously been shown to function in early T cell progenitors to 
establish T cell fate15. Similarly, high RUNX2 and RUNX3 deviation 
scores also encompass RUNX1 activity, as seen in early T cell devel-
opment16. Differential analysis of ATAC-seq peaks that contained 
binding sites for each TF identified cell-type-specific accessible sites. 
For example, accessible regions in Jurkat cells containing TCF7L2 
motifs included promoters and enhancers for the T cell–specific 
genes CD28, CD3D, CD3E and CD3G (Fig. 2d). Finally, we deter-
mined how many single cells were required to reliably recapitulate 
ensemble ATAC-seq measurements. Notably, TF deviation scores 
were highly accurate even in individual cells, as compared to scores 
derived from ensemble ATAC-seq data (Spearman rank: ρ =​ 0.957, 
P <​ 0.01; Supplementary Fig. 2d). In contrast, accurate quantifica-
tion of individual open chromatin sites required the aggregation 
of approximately 50 single cells in order to reflect population peak 
profiles (Spearman rank: ρ =​ 0.5, P <​ 0.01; Supplementary Fig. 2e). 
Therefore, our strategy to assess epigenomic signatures using 
T-ATAC-seq data was to first characterize cells using TF deviation 
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Fig. 1 | T-ATAC-seq generates open chromatin and TCR profiles in single T cells. a, Outline of the T-ATAC-seq protocol. Squares indicate individual 
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barcodes and analyzed by high-throughput sequencing. b, Pie chart indicating the overlap of TCR-seq and ATAC-seq data from single Jurkat cells (n =​ 231 
single cells; n =​ 3 independent experiments) that passed quality-control filters. Shown is the proportion of cells that generated ATAC-seq profiles in which 
TRA or TRB sequence was also obtained. The gray bar indicates the portion of cells in which ATAC-seq data were obtained but in which TRA or TRB data 
were not (2.6%). c, T-ATAC-seq data quality-control (QC) filters. Shown is the number of unique ATAC-seq nuclear fragments in each single Jurkat cell, 
as compared to the percentage of fragments in ATAC-seq peaks derived from ensemble Jurkat ATAC-seq profiles (n =​ 384 single cells; n =​ 4 independent 
experiments). d, Aggregate (top) and single-cell (bottom) T-ATAC-seq profile characteristics. Shown are the enrichments of ATAC-seq Tn5 insertions 
around TSSs and the nucleosomal periodicity of ATAC-seq fragment lengths. Aggregate profiles obtained from all T-ATAC-seq single cells (n =​ 288 cells), 
T-ATAC-seq single cells that passed QC filters (n =​ 231 single cells), and scATAC-seq cells are shown (n =​ 49 cells). Fragment length indicates the genomic 
distance between two Tn5 insertion sites, as determined by paired-end sequencing of ATAC fragments. Density indicates the fraction of fragments with 
the indicated length. The cell number indicates the position of each individual cell in the IFC, and the associated fragment number indicates the number 
of unique nuclear fragments obtained in that cell. Count indicates the number of fragments for each fragment length. e, QC filters for TRA (left) and TRB 
(right) sequences. Shown are TRA or TRB paired-end sequencing read counts for each single cell, as compared to the TCR dominance of the top clone for 
each cell (n =​ 288 single cells; n =​ 3 independent experiments). TCR dominance was quantified as the fraction of reads that supported the most prevalent 
TCR clone by sequence identity6. Dashed lines represent QC filters of 100 reads and 70% dominance for Jurkat cells. f, Heat maps showing the TRA or 
TRB rearrangements identified in Jurkat cells (n =​ 288 single cells; n =​ 3 independent experiments). Each axis represents all possible genes within the 
indicated TRA or TRB locus. The labeled genes indicate the sequences identified using T-ATAC-seq. g, Mouse and human T cell mixing experiment (n =​ 94 
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identified when compared to mouse or human references (right). In the IFC, human T cells are labeled in green, and mouse T cells are labeled in red.

Nature Medicine | VOL 24 | MAY 2018 | 580–590 | www.nature.com/naturemedicine582

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturemedicine


LettersNature Medicine

scores and then to calculate accessibility differences at individual 
sites when single cells could be aggregated by their shared immuno-
phenotype or by their TRA and TRB sequences.

T-ATAC-seq identifies single-cell regulatory signatures in pri-
mary CD4+ T cells. To build a comparison dataset for T-ATAC-seq  
profiles in primary cells and to establish T cell subset-specific 
chromatin landscape benchmarks, we generated ensemble ATAC-
seq profiles from cell-surface-marker-defined CD4+ naive and 
memory T cell subtypes17. Peripheral blood CD4+ T cells were 
obtained from two healthy subjects (a total of three replicates), and 
T cell subsets were isolated by FACS and subjected to ATAC-seq.  

We profiled naive T cells (CD4+CD45RA+CD25–CD127hi), regula-
tory T cells (Treg cells; CD4+CD25+CD127low), T helper (TH) 1 cells 
(CD4+CD45RA–CD25–CD127hiCXCR3+CCR6–CXCR5–), TH17 cells 
(CD4+CD45RA–CD25–CD127hiCXCR3–CCR6+CXCR5–), TH1-17 
cells (CD4+CD45RA–CD25–CD127hiCXCR3+CCR6+CXCR5–) and 
TH2 cells (CD4+CD45RA–CD25–CD127hiCXCR3–CCR6–CXCR5–) 
(Supplementary Fig. 3a,b)17. Analysis of ensemble ATAC-seq profiles 
by principal component analysis (PCA) showed distinct chromatin 
states for each T cell subset; PC1 distinguished naive and memory 
T cell subtypes, PC2 distinguished Treg cells from all other subtypes, 
and PC3 distinguished TH1 and TH17 subtypes (Fig. 3a). Analysis of 
differential ATAC-seq peaks showed that a large shift in chromatin  
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accessibility accompanied the differentiation of naive T cells to 
memory T cells, with the majority of differential peaks (6,868 sites) 
closing in memory cells (Fig. 3b). In contrast, there were relatively 
fewer differences between TH subtypes, and cell-type-specific open 
chromatin sites were located mainly at functional gene promoters 
and at distal elements (Fig.  3b–e). For example, Treg cells showed 
increased accessibility at the promoter and upstream elements in 
the interleukin 2 receptor subunit alpha (IL2RA) locus, consis-
tent with this gene’s critical function in this cell type (Fig. 3c,d)18. 
Similarly, TH1 and TH1-17 cells showed increased accessibility at the 
interferon gamma (IFNG) locus, and TH1-17 and TH17 cells showed 
increased accessibility at the IL26 and IL22 loci, consistent with 
the functions of these molecules in T cell–mediated inflammation 
(Fig. 3e)19,20. Notably, all of the naive and memory T cell subtypes 
could be distinguished from one another when downsampled to the 
fragment density equivalent to that obtained by T-ATAC-seq data 
(1 ×​ 103 to 1 ×​ 104 nuclear fragments; Fig. 3f), suggesting that vari-
ability in T cell phenotypes could be determined with single-cell 
measurements.

We next performed T-ATAC-seq analysis in primary human 
peripheral blood CD4+ T cells (Fig. 3a). We sorted naive T cells (as 
described above), memory T cells that contained all of the TH phe-
notypes (CD4+CD45RA–CD25–CD127hi) and memory TH17 cells 
(CD4+CD45RA–CD25–CD127hiCXCR5–CCR6+) from two healthy 
individuals and subjected each population to T-ATAC-seq. Single-
cell profiles were filtered using quality controls as described above 
for immortalized cells. Briefly, single primary T cells displayed 
high-quality ATAC-seq reads; cells passing the filter yielded an 
average of 2.4 ×​ 103 fragments that mapped to the nuclear genome, 
and an average of 73% of fragments were within peaks derived 
from ensemble primary T cell ATAC-seq profiles (Supplementary 
Fig. 4a). T-ATAC-seq data showed enrichment of fragments at TSSs 
and nucleosomal periodicity of fragment lengths similar to those in 
the ensemble profiles (Supplementary Fig. 4a). Similarly, TRA and 
TRB sequencing data remained robust in captured single cells, gen-
erating on average 1.1 ×​ 103 reads for TRA sequences and 4.3 ×​ 102 
reads for TRB sequences (Supplementary Fig. 4b,c).

We first analyzed T-ATAC-seq profiles by using a computational 
pipeline that integrated reference ensemble ATAC-seq data from T 
cells (this study) and other hematopoietic cell types10 to phenotype 
individual cells (Fig. 4a). By using a previously described approach 
to train principal components (PCs) on ensemble ATAC-seq data 
and project single-cell profiles onto that PC space10, single cells 
were compared against all ensemble profiles to remove contaminat-
ing non-T cells that remained after sorting (cells sorted to >​ 95% 
purity). Indeed, although the majority of single-cell profiles showed 
the highest epigenomic correlation with ensemble T cell profiles, as 
compared to those of other cell types, 11/185 naive T cells, 2/134 
memory T cells and 4/148 TH17 cells showed higher similarity with 
other immune cell types, particularly with CD4+ monocytes, and 
were excluded from further analysis (Supplementary Fig.  4d,e). 
Epigenomic profiles of the remaining T cells (450 cells) were then 
compared against the profiles of Jurkat cells (231 cells) and the pre-
viously published single-cell epigenomic profiles of blood mono-
cytes (92 cells) and lymphoid-primed multipotent progenitor 
(LMPP) cells (89 cells)9. t-distributed stochastic neighbor embed-
ding (t-SNE) projection21 of single-cell epigenome profiles revealed 
clustering of single cells largely according to cell type, with primary 
T cells clustering separately from Jurkat cells, monocytes and LMPP 
cells (Fig. 4b). Of note, T cell profiles generated a continuous spec-
trum of epigenomic states, rather than distinct subpopulations of 
naive and memory phenotypes, suggesting substantial regulatory 
variability within cell-surface-marker-defined subpopulations. 
In particular, previous studies using high-resolution cell surface 
marker staining and functional analysis identified significant het-
erogeneity within the CD45RA+ naive T cell population, including 

the presence of recent thymic emigrants, ‘super-naive’ cells, early-
memory and differentiated cells, and memory stem-like cells22–28. 
Indeed, single-cell naive T cell chromatin accessibility profiles also 
showed a spectrum of cell states, including a small population of 
naive cells present in both individuals (20/174 naive cells, 11.5%) 
that clustered closely with memory and TH17 cells (Fig. 4b).

We next measured TF deviation scores and variation in single 
cells and aggregated them by cell type. In aggregate, all of the T 
cells exhibited high deviations in TCF–LEF family members, as 
compared to monocytes, suggesting that these factors probably 
directed T cell lineage specification through changes in chromatin 
accessibility (Fig. 4c)29. In contrast, monocytes exhibited high activ-
ity of CCAAT/enhancer-binding protein (CEBP) family members 
and of  the E26 transformation-specific (ETS) family  TF PU.1. A 
comparison of naive cells and memory cells identified a large shift 
in epigenomic profile from high activity of TFs involved in T cell 
specification in naive T cells, including TCF family factors and zinc 
finger and BTB-domain-containing 7B (ZBTB7B), to TFs involved 
in T cell activation in memory cells, including the activator protein 
1 (AP-1) factors FOS, JUN and basic leucine zipper ATF-like tran-
scription factor (BATF) (Fig. 4c). Finally, comparison of memory 
T cells and TH17 cells showed high activities for the STAT, GATA 
and IRF TFs in memory cells and for the AP-1, MAF, RUNX and 
RAR-related orphan receptor (ROR) TFs in TH17 cells, consis-
tent with the critical roles of these TFs in memory and TH17 cells, 
respectively30–38 (Fig.  4c). The cell-type-specific TFs identified in 
aggregated single-cell profiles were remarkably similar to those in 
the profiles obtained from ensemble measurements in 500 ×​ more 
cells. Ensemble naive T cell profiles showed similar enrichments of 
accessibility at TCF–LEF family members and ZBTB7B, whereas 
memory cells demonstrated high deviations in AP-1 factors 
(Supplementary Fig. 5a,b). Similarly, TH17 cells showed high activi-
ties for ROR, AP-1 and RUNX factors, as compared to that in all of 
the other memory T cell types (Supplementary Fig. 5a–c). Finally, 
an examination of TH1, TH2 and Treg cells identified TF signatures 
that aligned well with previously identified master regulators in 
each lineage, including TBX21 (also known as T-BET) and eome-
sodermin (EOMES) in TH1 cells, GATA3 in TH2 cells and FOXP3 in 
Treg cells (Supplementary Fig. 5a–c).

We next integrated information from ensemble profiles and cell 
surface marker staining to visualize epigenomic variability in these 
canonical T cell populations. As observed in the t-SNE projections, 
CD45RA+ naive T cells displayed substantial TF heterogeneity that 
could be divided into at least three subclusters that spanned the 
continuum of naive to memory cell differentiation. The majority 
of naive cells (132/174; 75.9%) were present in the first cluster of 
‘true-naive’ cells, and they demonstrated high TF deviation scores 
for ensemble naive T cell TFs, including ZBTB7B, and low scores 
for ensemble memory cell TFs (Fig. 4d). A second cluster of ‘early-
differentiating’ naive cells (22/174; 12.6%) showed lower deviation 
scores for naive cell TFs and higher scores for memory cell TFs, 
including the AP-1, IRF and STAT factors, although these were 
lower than those for true memory cells (Fig. 4d and Supplementary 
Fig. 6a,b). Finally, a small minority of naive cells existed in a dif-
ferentiated state (20/174; 11.5%) with high AP-1 and RUNX activ-
ity (Fig. 4d and Supplementary Fig. 6a,b). Extensive variability was 
also observed in sorted memory T cells, with variation in known TH 
phenotypes as expected, as well as a small fraction of cells clustering 
closely with naive T cells, suggesting an early differentiated memory 
state (Fig. 4d). The observed TF variability in T cell subtypes was 
greater than expected in background ATAC-seq peaks that were 
matched for GC bias, peak height and transposition rate, and vari-
ability was not driven by single cells with low-quality ATAC-seq 
data, such as low fragment numbers (Supplementary Fig. 6b,c).

Comparison of all three populations of T cells revealed two cat-
egories of factors—factors involved in general memory or naive  
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Fig. 3 | Epigenomic landscape of ensemble human CD4+ T cell subtypes. a, PCA of ensemble ATAC-seq profiles from CD4+ T cell subtypes using the 
top 2,500 variable ATAC-seq peaks, as defined by variance rank of log2(variance-stabilized read counts) (n =​ 3, 3 independent experiments). Percentages 
indicate percentage of variance explained by each PC. b, Differential ATAC-seq peaks for the indicated T cell subtypes. Memory T cell signatures reflect 
the average accessibility in TH1, TH2, TH17, and TH1-17 cells. c, Heat map showing clusters for the top 2,500 varying ATAC-seq peaks. Colors indicate log2 
fold change (FC) of reads in each peak compared to the mean across all T cell types. d, Left, MSigDB immunologic signatures of Treg-specific ATAC-seq 
peaks as obtained from GREAT analysis. Right, MSigDB pathway signatures of TH1-specific ATAC-seq peaks as obtained from GREAT analysis (binomial 
test, n =​ 3 replicates per cell type, 3 independent experiments). e, Ensemble ATAC-seq data genome tracks for the indicated T cell subtypes. Highlighted 
regions show cell-type-specific ATAC-seq peaks. f, Pearson correlation of PC scores of ensemble ATAC-seq profiles (left) and of ensemble ATAC-seq 
profiles after downsampling each profile to 10,000 (middle) or 1,000 (right) fragments. Downsampling was performed by randomly selecting 10,000 or 
1,000 nuclear fragments in each ensemble ATAC-seq .bam file. Heat maps demonstrate that CD4+ T cell subtype profiles can be distinguished from one 
another by using the full dataset or profiles with a fraction of the fragments, as expected in single-cell libraries (16 ATAC-seq profiles obtained from three 
independent experiments).
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T cell differentiation and factors specific to TH cell subtypes 
(Fig. 4e). Unexpectedly, relatively few TFs were enriched in the lat-
ter category, suggesting that large-scale changes occurred during 
the transition from naive to memory phenotypes, which dominated 
the epigenomic landscape, whereas subtype-specific changes were 
comparatively fewer and controlled by specific factors (Fig.  4e). 
This principle was also supported by an unbiased analysis of TF 
modules, in which we correlated TF activity across single cells 
(Supplementary Fig. 6d). We found several TF programs that corre-
sponded to subset-specific functions and that these TFs functioned 
in concert with a common memory program (Supplementary 
Fig. 6d). Notably, modules encompassing TH1 and TH2 phenotypes 
could be observed in this analysis, even though these populations 
were not specifically enriched by cell sorting, which demonstrated 
that this information could be derived de novo from single-cell pro-
files. Finally, differential analysis of ATAC-seq peaks that contained 
binding sites for cell-state-specific TFs identified cell-type-specific 
cis-regulatory elements, including SATB homeobox 1 (SATB1) 
locus elements in naive T cells and BATF and CCR6 locus elements 
in memory T cells.

We next integrated TCR-seq results with single-cell epigenomic 
profiles from these healthy individuals. We identified two clonal 
populations within the memory population in one individual with 
a history of atopy, which could be identified by common expres-
sion of TRBV18–TRBJ2-3, suggesting that they may have expanded 
to shared antigens (Fig. 4g). Of note, neither clonotype was pres-
ent in the sampled naive cells from the same individual. Analysis 
of epigenomic signatures in these cells revealed common high TF 
deviation scores for GATA factors, consistent with a TH2 phenotype 
(Fig.  4g). In summary, these data demonstrate that T-ATAC-seq 
can effectively capture ensemble epigenomic measurements while 
simultaneously preserving single-cell regulatory and TCR informa-
tion.

T-ATAC-seq reveals regulatory signatures in T cell leukemia and 
host immunity. We performed T-ATAC-seq analysis on clinical 
blood samples from patients with Sézary syndrome, which is a leu-
kemic form of cutaneous T cell lymphoma (CTCL). Identification 
of cancer-cell regulatory signatures can be challenging, as only a 
fraction of circulating CD4+ T cells are malignant, and standard 
immunophenotypic methods to distinguish healthy and cancer 
clones are imprecise and not applicable to some patients39,40. These 
observations have been the basis for the recent development of TCR 
clonality assays for the identification of malignant T cell expansion 
and minimal residual disease in clinical samples from patients with 
CTCL41,42. Therefore, we asked whether the integrated analysis of 
T-ATAC-seq could improve the identification of cancer-specific 
epigenomic signatures of malignant cells (Fig. 5a). We first isolated 
CD4+ T cells from a patient with Sézary syndrome and subjected 
these cells to T-ATAC-seq (in three independent experiments). 
Notably, 73% of all CD4+ T cells (157/215 cells) expressed a single 
TCRβ​-encoding sequence TRBV7-9–TRBJ1-5, which represented 
the putative leukemic clone (Fig.  5b and Supplementary Fig.  7a). 
These cells showed TCR-β​ subunit pairing with the TCR-α​ subunit 
encoded by TRAV12-1–TRAJ26. We next aggregated all of the cells 
according to the leukemic or nonleukemic clonotype and compared 
the epigenomic profiles. Leukemic cells showed high TF deviation 
scores for memory T cell–specific TFs, including BATF, JUN and 
FOS, and GATA motifs, including the TH2-specific TF GATA3 
(Fig.  5c). These findings were consistent with the long-standing 
hypothesis, based on cytokine and cell surface marker expression, 
that Sézary cells represent a malignant counterpart of TH2 memory 
T cells, which may contribute to disease persistence and pathogen-
esis43,44. t-SNE projection of single-cell T-ATAC-seq PCA scores 
revealed that almost all of the memory T cells in this patient were 
replaced by leukemic TH2 cells, whereas the nonmalignant T cells 

were predominantly in a naive state. The nonmalignant T cell clones 
in the patient with CTCL exhibited strong SMAD family member 3 
(SMAD3)-associated chromatin accessibility, which may reflect an 
immunosuppressive transforming growth factor (TGF)-β​ pathway 
(Fig. 5c,e). These findings identified a possible cause for systemic 
immunodeficiency associated with Sézary syndrome, as nearly all 
of the memory T cells had been replaced by the leukemic clone 
(Fig.  5d)45. Notably, analysis of individual cis-regulatory changes 
that contributed to the overall shift in TF landscape identified genes 
previously shown to be recurrently mutated in CTCL and other 
cancer types (Fig. 5e)46,47. These included genes involved in T cell 
survival and activation pathways, such as TNFAIP3, PIK3CG and 
PRKCQ. Analysis of MSigDB signatures pathways enriched in cis-
elements that were more accessible in leukemic cells demonstrated 
that these elements were located near genes that are upregulated in 
T cell leukemia, as well as in other cancer types (Fig. 5f).

Finally, we asked whether the leukemia-specific signature could 
be identified using standard immunophenotypic FACS strategies 
for cancer cells. We sorted CD4+ cells according to their expression 
of CD26 (also known as dipeptidyl peptidase 4; DPP4), a cell sur-
face protein whose loss of expression is clinically used as a diagnos-
tic tool to identify malignant Sézary cells (Supplementary Fig. 7b)48. 
Unexpectedly, we observed the presence of the CTCL clone in both 
CD26+ and CD26– cell populations, demonstrating that, at least in a 
subset of patients, this marker does not accurately identify circulat-
ing malignant cells (Fig. 5g)40. Accordingly, aggregating single cells 
on the basis of their immunophenotype rather than their clonotype 
obscured cancer-specific epigenomic signatures, as memory and 
TH2-specific TFs were not enriched in CD26– cells as compared to 
that in CD26+ cells (Fig. 5h). T-ATAC-seq analysis of two additional 
patients with CTCL confirmed the superiority of TCR clonotyp-
ing over CD26 immunophenotyping to isolate leukemic clones and 
their epigenomic signatures (Supplementary Fig. 7c,d). Altogether,  
the  use of T-ATAC-seq in T cell leukemia demonstrates that this 
method is applicable to clinical blood samples and can be used to 
separate clonal and nonclonal regulatory pathways in cells from the 
same individual.

Discussion
The expression of uniquely recombined TCRs on individual T cells 
is the central driver of immune responsiveness and connects specific 
antigen recognition to a particular effector function. In addition, 
because the diversity of possible human TCRs is estimated at ~1014, 
single-cell TCR-seq can serve as a powerful lineage tracer, either 
in the context of a normal immune response or in the context of 
malignant transformation. Therefore, pairing TCR identity to func-
tional phenotype represents an important strategy to investigate T 
cell clonal dynamics, phenotypic plasticity and tumor heterogene-
ity6,12,13. Here we reported the technical development and applica-
tion of T-ATAC-seq analysis to immortalized and primary human 
T cells. We have found it to be robust and reproducible across T cell 
types and individuals and to compare favorably with previous tech-
nologies capable of assaying single-cell epigenomes. T-ATAC-seq 
pairs epigenomic data, identifying cis and trans determinants of cell 
identity, with high-fidelity RNA sequences of TCR-encoding loci to 
provide a platform for multi-omic investigation of T cell diversity.

We used ensemble ATAC-seq data and TF binding sites genome 
wide as scaffolds to map single-cell chromatin states, and we devel-
oped a step-wise approach to use single-cell chromatin accessibil-
ity to phenotype immune cells. Each single cell was sequentially 
classified to major blood lineages, and then to T cell subsets—a 
scheme that recapitulated the chromatin landscape during physi-
ological development. Previous efforts to characterize single-
cell epigenomes highlighted the presence of interpopulation and 
intrapopulation variability in cell lines and distinct hematopoietic 
cell types8,10,14. We demonstrated that this approach could also be  
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informative to distinguish more subtle phenotypes in primary 
T cells and reveal heterogeneity in T cell populations that could 
appear similar by cell surface marker profiling. For example, a 

small fraction of naive CD4+ T cells, characterized by the expres-
sion CD45RA, exhibited chromatin states more similar to those of 
memory T cells, showing accessibility at genomic sites bound by 
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AP-1 TFs. This observation is supported by previous functional 
studies that identified a memory T cell population with stem-like 
properties in the CD45RA+ naive T cell gate27. Similarly, single cells 
with memory T cell or TH17-defining cell surface markers displayed 
significant epigenomic heterogeneity, particularly in cell-type-
specific TFs such as the IRF, STAT and ROR factors. These results 
suggest that memory T cells may exist in a phenotypic continuum, 
rather than in distinct quantal chromatin states3. Future studies 
with more extensive sampling of single T cells in homeostatic and 
inflammatory conditions could use this approach to define the con-
tinuous landscape of single T cell states and variability within cell- 
surface-marker-defined subtypes.

We exploited the ability of T-ATAC-seq to pair TCRs with chro-
matin state information to identify cancer-associated epigenomic 
changes in patients with T cell leukemia. The clinical diagnosis of T 
cell leukemia is based on several factors, including clinical presenta-
tion, histopathologic findings and the identification of a clonal T cell 
population. However, all of these diagnostic findings, including the 
expansion of T cell clones, are often present in benign inflammatory 
skin conditions, and it remains a significant challenge to distinguish 
small populations of malignant cells from benign, but oligoclonal, 
T cell proliferations42,49. Using T-ATAC-seq, we were able to define 
epigenomic signatures of clonal cancer cells that were missed by 
ensemble or standard FACS-based separation methods, demon-
strating the promise of this approach. This result has potentially 
significant clinical applications, as recent studies have described 
distinct epigenomic classifications of CTCL that are associated with 
differential responses to currently used clinical therapies that tar-
get the epigenome, such as histone deacetylase inhibitors50,51. Future 
studies on larger patient cohorts are needed to establish whether 
integration of epigenomic information with T cell clonality can (i) 
improve diagnostic precision as compared to the standard clinical 
techniques currently in use and (ii) predict or monitor successful 
clinical responses to therapies that target the epigenome.

More broadly, T-ATAC-seq represents an important technical 
advance toward achieving an atlas of human cell types and states52, in 
that it is able to generate genome-wide chromatin accessibility maps, 
while simultaneously preserving and measuring RNA sequence. 
T-ATAC-seq may be particularly well-suited for the examination of 
TF activity and specific enhancer elements that underlie cell states, 
as compared to existing methods that pair whole-transcriptome 
profiles with TCR sequences in single cells. Although we used an 
unbiased approach and sequenced all of the captured cells, which is 
applicable to settings of significant clonal expansion such as CTCL, 
the use of T-ATAC-seq to interrogate rare clonal populations may 
be technically challenging at the current throughput of 96 cells per 
microfluidic chip. One strategy to address this challenge may be to 
selectively sequence single-cell epigenomes after identifying TCRs 
of interest (or vice versa); however, further technical improvements 
focused on increasing throughput of T-ATAC-seq will be critical for 
the analysis of rare T cell clones. Given the inherent challenges in 
obtaining large amounts of RNA from T cells, as compared to other 
cell types, we believe that this strategy should be easily adaptable 
to other cell types for which RNA is more abundant. In particu-
lar, T-ATAC-seq could be adapted to determine RNA sequences of 
other cell-identity-specific transcripts, such as those encoding B cell 
receptors, olfactory receptors, long noncoding RNAs (lncRNAs) 
and cytokines, or perhaps with additional technical development, 
even to measure whole transcriptomes. Finally, the sequential reac-
tion conditions used to assay chromatin and RNA sequences from 
single cells can be easily scaled-up to obtain both types of informa-
tion from ensemble samples for which material is limited, such as 
rare cell types or clinical samples.

We envision that T-ATAC-seq will be complementary to 
approaches for unbiased identification of TCR ligands, enabling inte-
gration of T cell epigenomic state, TCR sequence and TCR ligands53,54. 

The application of this strategy to human diseases such as cancer and 
autoimmune disease, particularly in the context of immunotherapy, 
could be invaluable in generating comprehensive profiles of benefi-
cial and harmful T cell responses, the regulatory networks underlying 
either response and the antigens that drive these networks.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41591-018-0008-8.
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Methods
Human subjects. This study was approved by, and performed in compliance with, 
the ethical regulations of the Stanford University Administrative Panels on Human 
Subjects in Medical Research. Written informed consent was obtained from all 
participants.

Cell culture and T cell isolation. Jurkat cells were obtained from the ATCC (clone 
E6-1) and were cultured in RPMI-1640 medium (Thermo Fisher Scientific) with 
10% FBS and penicillin–streptomycin. For single-cell experiments with Jurkat 
cells, the cells were sorted into a single-cell suspension before capture on the C1 
IFC microfluidic chips (Fluidigm). Mouse 58α​β​-negative hybridoma cells were 
retrovirally transduced with a paired TCR-α​β​-encoding sequence, and these cells 
were used in the mouse and human cell mixing experiments55,56. CD4+ T cells 
from healthy volunteers or patients with Sézary syndrome were enriched from 
peripheral blood using the RosetteSep Human CD4+ T Cell Enrichment Cocktail 
(StemCell Technology). For single-cell experiments, CD4+ T cells were sorted as 
naive T cells (CD4+CD25–CD45RA+), memory T cells (CD4+CD25–CD45RA–) 
or TH17 cells (CD4+CD25–CD45RA–CCR6+CXCR5–). 200,000 cells from two 
healthy volunteers were sorted into RPMI-1640 medium supplemented with 10% 
FBS, washed and loaded onto the C1 IFC microfluidic chips, as described below. 
For ensemble ATAC-seq experiments, CD4+ T cells were sorted as naive T cells 
(CD4+CD25–CD45RA+), Treg cells (CD4+CD25+IL7Rlo), TH1 cells (CD4+CD25–

IL7RhiCD45RA–CXCR3+CCR6–), TH2 cells (CD4+CD25–IL7RhiCD45RA–CXCR3–

CCR6–), TH17 cells (CD4+CD25–IL7RhiCD45RA–CXCR3–CCR6+) and TH1-17 cells 
(CD4+CD25–IL7RhiCD45RA–CXCR3+CCR6+) (Supplementary Fig. 5). 55,000 
cells from two healthy volunteers (three replicates total) were sorted into RPMI-
1640 medium supplemented with 10% FBS, washed with PBS and immediately 
transposed as described below. Post-sort purities of >​ 95% were confirmed by flow 
cytometry for all of the samples.

Antibodies. The following antibodies were used in this study: PERCP–Cy5.5-
conjugated anti-human-CD45RA (clone HI100, lot no. B213966, cat. no. 304107, 
BioLegend), anti-human-CD127 conjugated to Brilliant Violet 510 (clone A019D5, 
lot no. B197159, cat. no. 351331, BioLegend), allophycocyanin (APC)–Cy7-
conjugated anti-human-CD4 (clone OKT4, lot no. B207751, cat. no. 317417, 
BioLegend), phycoerythrin (PE)-conjugated anti-human-CCR6 (clone G034E3, 
lot no. B203239, cat. no. 353409, BioLegend), fluorescein isothiocyanate (FITC)-
conjugated anti-human-CD25 (clone BC96, lot no. B168869, cat. no. 302603, 
BioLegend), anti-human-CXCR3 conjugated to Brilliant Violet 421 (clone G025H7, 
lot no. B206003, cat. no. 353715, BioLegend), Alexa-Fluor-647-conjugated anti-
human-CXCR5 (clone RF8B2, lot no. 5302868, cat. no. 558113, BD Pharmingen), 
PE-conjugated anti-human-CD26 (clone 2A6, lot no. 4301881, cat. no. 12-0269-42, 
Thermo Fisher) and anti-human-CD3E conjugated to Pacific Blue (clone UCHT1, 
lot no. 4341657, cat. no. 558117, BD Biosciences). All of the antibodies were 
validated by the manufacturer in human peripheral blood samples, used at a 1:200 
dilution and compared to isotype and no-staining control samples.

Ensemble ATAC-seq. Cell isolation and transposase reaction. Cells were isolated 
and subjected to ATAC-seq as previously described7. Briefly, 55,000 cells were 
pelleted after sorting and washed once with 100 μ​l PBS. Cell pellets were then 
resuspended in 50 μ​l lysis buffer (10 mM Tris-HCl, pH 7.4, 3 mM MgCl2, 10 mM 
NaCl, 0.1% NP-40 (Igepal CA-630)) and immediately centrifuged at 500 g for 
10 min at 4 °C. The nuclei-containing pellets were resuspended in 50 μ​l  
transposition buffer (25 μ​l 2 ×​ TD buffer, 22.5 μ​l dH20, 2.5 μ​l Illumina Tn5 
transposase) and incubated at 37 °C for 30 min. Transposed DNA was purified with 
MinElute PCR Purification Kit (Qiagen) and eluted in 10 μ​l EB buffer.

Primary data processing and peak calling. ATAC-seq libraries were prepared as 
previously described, barcoded and sequenced on an Illumina Nextseq instrument 
at the Stanford Functional Genomics Facility7. Adaptor sequence trimming, 
mapping to the human hg19 reference genome using Bowtie2 and PCR duplicate 
removal using Picard Tools were performed. All samples were merged for 
peak calling using MACS2. The number of aligned reads, Tn5 offset corrected, 
mapped to the union peak set for each sample was quantified using intersectBed 
in BedTools. Peak counts were normalized using the ‘CQN’ package in R. Peak 
intensity was defined as the variance-stabilized log2 counts using the ‘DESeq2’ 
package in R. After these steps, an N ×​ M data matrix was obtained, where N 
indicates the number of merged peaks, M indicates the number of samples, and 
the value Di,j indicates the number of reads that fall within peak i (i =​ 1 to N) 
in sample j (j =​ 1 to M). Pearson correlation was calculated based on the log2-
normalized counts of all the peaks. Unsupervised correlation of the Pearson 
correlation matrix was performed using Cluster 3.0 and visualized in Java Treeview.

Transcript-indexed single-cell ATAC-seq (T-ATAC-seq). Step 1. Cell isolation 
and loading onto the IFC. We adapted the C1 Single-Cell Auto Prep System with 
its Open App program (Fluidigm) to perform T-ATAC-seq. Single T cells were 
captured using the C1 IFC microfluidic chips (small; 5–10 µ​m), and custom-built 
T-ATAC-seq scripts were generated using the C1 Script Builder Software (scripts 
available from Fluidigm and upon request). Jurkat cells or peripheral blood T cells  

were first isolated by FACS-based sorting and then washed three times in C1 
DNA Seq Cell Wash Buffer (Fluidigm). Cells were resuspended in DNA Seq Cell 
Wash Buffer at a concentration of 300 cells/μ​l and mixed with C1 Cell Suspension 
Reagent at a ratio of 3:2. 15 μ​l of this cell mix was loaded onto the IFC.  
After cell loading, the captured cells were visualized by imaging on a Leica  
CTR 6000 microscope.

Step 2. Microfluidic reactions on the IFC: reagents and conditions. On the C1, 
cells were subjected sequentially to lysis and transposition, transposase release, 
MgCl2 quenching, reverse transcription and PCR, as described (Fig. 1a and 
Supplementary Fig. 1a), using the custom T-ATAC-seq script ‘T-ATAC-seq: 
Sample Prep (1,861 ×​ , 1,862 ×​ , 1,863 ×​ )’. For lysis and transposition (in 
chamber 1), 30 μ​l of Tn5 transposition mix was prepared (22.5 μ​l 2 ×​ TD buffer, 
2.25 μ​l transposase (Nextera DNA Sample Prep Kit, Illumina), 2.25 μ​l  
C1 Loading Reagent without salt (Fluidigm), 0.45 μ​l 10% NP40, 0.30 μ​l water, 
and 2.25 μ​l Superase In RNase inhibitor (20 U/μ​l; Thermo Fisher Scientific)). 
For transposase release (in chamber 2), 20 μ​l of Tn5 release buffer mix was 
prepared (2 μ​l 500 mM EDTA, 1 μ​l C1 Loading Reagent without salt and 17 μ​l  
10 mM Tris-HCl buffer, pH 8). For MgCl2 quenching (in chamber 3), 20 μ​l  
of MgCl2 quenching buffer mix was prepared (18 μ​l 50 mM MgCl2, 1 μ​l C1 
Loading Reagent without salt and 1 μ​l 10 mM Tris-HCl buffer, pH 8). For 
reverse transcription (in chamber 4), 30 μ​l of RT mix was prepared (15.55 μ​l 
water, 3.7 μ​l 10 ×​ Sensiscript RT buffer (Qiagen), 3.7 μ​l 5 mM dNTPs, 1.5 μ​l C1 
Loading Reagent without salt (Fluidigm), 1.85 μ​l Sensiscript (Qiagen) and 3.7 μ​l  
6 μ​M TCR primer mix (described below)). Finally, for PCR of TRA, and TRB 
and ATAC fragments (in chamber 5), 30 μ​l of PCR mix was prepared (8.62 μ​l  
water, 13.4 μ​l 5 ×​ Q5 polymerase buffer (NEB), 1.2 μ​l 5 mM dNTPs, 1.5 μ​l C1 
Loading Reagent without salt, 0.67 μ​l Q5 polymerase (2 U/μ​l; NEB), 0.8 μ​l 25 μ​M  
non-indexed custom Nextera ATAC-seq PCR primer 1, 0.8 μ​l 25 μ​M non-
indexed custom Nextera ATAC-seq primer 2 and 3 μ​l 6 μ​M TCR primer mix). 
The primer sequences for the non-indexed custom Nextera ATAC-seq primers 
are listed in Supplementary Table 1 of a prior study8.

7 μ​l lysis and transposition mix, 7 μ​l transposase release buffer, 7 μ​l MgCl2 
quenching buffer, 24 μ​l RT mix and 24 μ​l PCR mix were added to the IFC inlets. 
On the IFC, Tn5 lysis and transposition reaction was carried out for 30 min 
at 37 °C. Next, transposase release was carried out for 30 min at 50 °C. MgCl2 
quenching buffer was immediately added, and chamber contents were immediately 
incubated with RT mix for 30 min at 50 °C. Finally, gap-filling and eight cycles 
of PCR were performed using the following conditions: 72 °C for 5 min and then 
thermocycling at 94 °C for 30 s, 62 °C for 60 s and 72 °C for 60 s. The amplified 
transposed DNA was harvested in a total of 13.5 μ​l C1 Harvest Reagent. Following 
completion of the on-chip protocol (~4–5 h), chamber contents were transferred 
to 96-well PCR plates, mixed and divided for further amplification of ATAC-seq 
fragments (5 µ​l) or TCR-seq fragments (6–7 µ​l).

Step 3. Amplification of TCR-seq libraries. The TRA and TRB sequences (collectively 
referred to as TCR sequences) from single cells were obtained by a series of 
three PCR reactions (phases) as previously described, with slight modifications 
for implementation on the IFC6,57. The design principles and validation of all 
TCR primers were described previously6, and primer sequences are listed in 
Supplementary Table 1 in that study6. To integrate TCR sequence amplification into 
the T-ATAC-seq protocol, the RT and first-phase PCR was performed in chambers 
4 and 5 of the IFC using the conditions described above. The phase 1 TCR primer 
mix included multiple Vα​- and Vβ​-region-specific primers and Cα​- and Cβ​
-region-specific; each V-region-specific primer was at a concentration of  
0.06 μ​M, and each C-region-specific primer was at a concentration of 0.3 μ​M. 
RT was performed using the Cα​- and Cβ​-region-specific primers, and the cDNA 
was then subjected to eight cycles of PCR using both Vα​- and Vβ​-region-specific 
primers and Cα​- and Cβ​-region-specific primers (simultaneously, as ATAC 
fragments were also being amplified in the same chamber using distinct primers,  
as described above).

For off-chip phase 1 PCR, following completion of the on-chip protocol, 6–7 μ​l  
of the harvested libraries were further amplified using TCR primers. First, 
an additional eight cycles of PCR was performed using the following cycling 
conditions: 95 °C for 15 min and thermocycling at 94 °C for 30 s, 62 °C for 1 min 
and 72 °C for 1 min; 72 °C 10 min; and a hold at 4 °C.

For off-chip phase 2 PCR, a 1-μ​l aliquot of this final phase 1 product was used 
as a template for a 12-μ​l phase 2 PCR reaction. The following cycling conditions 
were used for a 25-cycle phase 2 PCR: 95 °C for 15 min and thermocycling at 94 °C 
for 30 s, 64 °C for 1 min and 72 °C for 1 min; 72 °C for 5 min; and a hold at 4 °C. 
For the phase 2 reaction, multiple internally nested Vα​-, Vβ​-, Cα​- and Cβ​-specific 
primers were used (V primers 0.6 μ​M, C primers 0.3 μ​M). The phase 2 primers 
targeting the V-region contained a common 23-b sequence at the 5′​ end to enable 
further amplification (during the phase 3 reaction) with a common 23-b primer.

For off-chip phase 3 PCR, 1 μ​l of the final phase 2 PCR product was used as 
a template for a 14-μ​l phase 3 PCR reaction, which incorporated barcodes and 
enabled sequencing on the Illumina MiSeq platform. For the phase 3 PCR reaction, 
amplification was performed using a 5′​ barcoding primer (0.05 μ​M) containing the 
common 23-b sequence and a 3′​ barcoding primer (0.05 μ​M) containing sequence 
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of a third internally nested Cα​-specific and/or Cβ​-specific primer, and Illumina 
paired-end primers (0.5 μ​M each). The following cycling conditions were used for 
a 25-cycle phase 3 PCR: 95 °C for 15 min and thermocycling at 94 °C for 30 s, 66 °C 
for 30 s and 72 °C for 1 min; 72 °C for 5 min; and a hold at 4 °C. The final phase 3 
barcoding PCR reactions for the TRA and TRB sequences were done separately. 
For the phase 3 reaction, 0.5 μ​M of the 3′​ Cα​-specific barcoding primer and the 
3′​ Cβ​-specific barcoding primer were used. In addition to the common 23-b 
sequence at the 3′​ end (which enabled amplification of products from the second 
reaction) and a common 23-b sequence at the 5′​ end (which enabled amplification 
with Illumina paired-end primers), each 5′​ barcoding primer contained a unique 
5-b barcode that specified the plate and a unique 5-b barcode that specified the 
row within the plate. In addition to the internally nested TCR C-region-specific 
sequence and a common 23-b sequence at the 3′​ end (which enabled amplification 
with Illumina paired-end primers), each 3′​ barcoding primer contained a unique 
5-nt barcode that specified the column within the plate.

For library purification and sequencing, after the phase 3 PCR reaction, each 
PCR product should have had a unique set of barcodes incorporated that specified 
the plate, row and column, as well as Illumina paired-end sequences that enabled 
sequencing on the Illumina MiSeq platform. The PCR products were combined at 
equal proportions by volume and run on a 1.2% agarose gel; a band ~350–380 bp in 
size was excised and gel-purified using a Qiaquick gel extraction kit (Qiagen). This 
purified product was then sequenced.

Step 4. Amplification of ATAC-seq libraries. 5 μ​l of harvested libraries were 
amplified in a 50-μ​l PCR reaction for an additional 17 cycles with 1.25 μ​M Nextera 
dual-index PCR primers8 in 1 ×​ NEBnext High-Fidelity PCR Master Mix, using 
the following PCR conditions: 72 °C for 5 min; 98 °C for 30 s; and thermocycling 
at 98 °C for 10 s, 72 °C for 30 s and 72 °C for 1 min. The PCR products were pooled 
and purified on a single MinElute PCR purification column (Qiagen). Libraries 
were quantified using qPCR prior to sequencing.

Data processing of single-cell TCR-seq libraries. TCR sequencing data 
were analyzed as previously described6,57. Briefly, raw sequencing data were 
demultiplexed using a custom computational pipeline, and primer dimers were 
removed. All paired-end reads were assembled by finding a consensus of at least 
100 b in the middle of each read. A consensus sequence was obtained for each TCR 
gene. Because multiple TCR genes might have been present in a given well, we 
established sequence-identity cutoffs according to sequence-identity distributions 
in each experiment (generally >​80% sequence identity within a given well). The 
sequence-identity cutoff ensured that all of the sequences derived from the same 
transcript would be properly assigned, even given a PCR error rate of 1/9,000 bases 
and a sequencing error rate of up to 0.4%. TCR V, D and J segments were assigned 
by VDJFasta. For downstream analysis, an additional read cut-off of 100 reads 
was used for each identified TCR sequence. For confirmation of identified TRB 
sequences, select patient samples were also sequenced by immunoSEQ (Adaptive 
Biotechnologies), according to the Survey protocol.

Data processing of single-cell ATAC-seq libraries. All single-cell ATAC-seq 
libraries were sequenced using paired-end, dual-index sequencing. ATAC-seq 
data were pre-processed as previously described8. Briefly, adaptor sequences 
were trimmed, sequences were mapped to the hg19 reference genome (or mm9 
for mixing experiments) using Bowtie2 and the parameter –X2000, and PCR 
duplicates were removed. Reads that mapped to mitochondria and unmapped 
contigs were also removed and not considered in further analyses. Filtered 
single-cell libraries were required to contain >​ 15% of unique fragments in called 
peaks from ensemble profiles (described below) and a library size of >​500 unique 
nuclear fragments for most of the downstream analysis. For t-SNE projections, 
a further filtering step was performed to include only high-quality libraries that 
contained >​ 40% of unique fragments in called peaks and a library size of >​500 
unique nuclear fragments. For example, conclusions regarding primary T cell 
subsets were derived from 450 single T cells that passed the 15% fragments in the 
peaks cut-off. t-SNE projections showed 320 high-quality cells that passed the 40% 
fragments in peaks cut-off (using the 455,057 peaks described below) to ensure 
that all conclusions based on clustering results were also true for high-quality 
single-cell libraries.

We validated that the ATAC-seq libraries did not contain contaminating 
fragments from TCR libraries in the T-ATAC-seq protocol. First, the phase 1 TCR 
primer mix used on the IFC (described above) was designed to exclude ATAC-seq 
Nextera-primer-binding sites. Therefore, TCR-encoding fragments present in the 
ATAC-seq library would not amplify in library preparation steps or be sequenced. 
Second, we did not observe TCR library fragments in filtered and aligned 
ATAC-seq reads. Third, ATAC-seq data derived from T-ATAC-seq in Jurkat cells 
displayed similar accessibility and TF motif measurements as ATAC-seq data 
derived from scATAC-seq in Jurkat cells.

Principal component analysis (PCA) and t-SNE clustering. We performed 
PCA projections of ensemble ATAC-seq and single-cell T-ATAC-seq profiles as 
previously described10,11. For ensemble ATAC-seq T cell profiles, after removing 
unmapped contigs, 97,395 peaks were used for further downstream analysis, and 

PCA analysis was performed on the 2,500 peaks that exhibited the highest variance 
across T cell subtypes (log2 variance-stabilized). For single-cell T-ATAC-seq 
analysis of primary T cells, we called peaks on a reference set of ensemble ATAC-
seq profiles encompassing a wide array of hematopoietic cell types that included 
previously published hematopoietic progenitors and end-stage cell types9,10, as well 
as CD4+ T subtypes generated in this study (Supplementary Figs. 4 and 5d). After 
removing peaks that aligned to annotated promoters, chromosome X, chromosome 
Y and unmapped contigs, 455,057 peaks were used for the PCA projection analysis. 
To normalize ensemble ATAC-seq profiles, we identified 18,858 low-variance 
promoters across all ensemble samples and normalized each sample by the mean 
fragment counts within the low-variance promoters. We subsequently performed 
PCA on the normalized values aggregated by similar ensemble cell types, resulting 
in 24 PCs. To score single cells for each component, we used the weighted 
coefficients for each peak and PC (determined using PCA-SVD of the ensemble 
data above) and calculated the product of the weighted PC coefficients by the 
centered count values for each cell; taking the sum of this value resulted in a matrix 
of cells by PCs. We then normalized each cell across the PC-scored values using 
the sum-of-squares. The matrix of cells by PCs, normalized by the sum-of-squares, 
was used as an input to a MATLAB implementation of t-SNE (https://lvdmaaten.
github.io/tsne/). Data were visualized with scHemeR10.

Transcription factor deviation and variability scores using ChromVAR. 
Single-cell ATAC-seq data processing and calculation of TF deviation were 
performed using chromVAR11. Human TF motifs were obtained from the 
JASPAR database58 and included many T cell–specific motifs derived from high-
throughput ‘systematic evolution of ligands by exponential enrichment’ (SELEX) 
and chromatin immunoprecipitation with sequencing (ChIP-seq) experiments59. 
All analysis was repeated using a curated list of human TF motifs from the cisBP 
database, without substantial differences11,60. JASPAR motif results are presented 
in all of the figures, except for Supplementary Fig. 5. Briefly, for each TF, ‘raw 
accessibility deviations’ were computed by subtracting the expected number of 
ATAC-seq fragments in peaks for a given motif (from the population average) 
from the observed number of ATAC-seq fragments in peaks for each single cell. 
For accessibility deviation calculations in primary T cells, we used either 455,057 
hematopoietic peaks (as defined above) or a subset of 87,360 peaks called from 
ensemble T cell subsets, monocyte and LMPP cell data, with similar results. 
For accessibility deviation calculations in Jurkat cells and other cell lines, we 
used 114,654 peaks called from ensemble DHS-seq profiles from Jurkat, K562, 
GM12878, and H1 ESC (ENCODE). Next, the accessibility deviation value for 
each cell was subtracted by the mean deviation calculated for sets of ATAC-seq 
peaks with similar accessibility and GC content (background peak set) to obtain a 
bias-corrected deviation value, and additionally divided by the s.d. of the deviation 
calculated for the background peak sets to obtain a z-score. For TF differences 
between single cells or aggregate single-cell populations, either bias-corrected 
deviations or z-scores were used to identify cell-specific motifs, as indicated in the 
figure legends. Volcano plots were generated by calculating the mean difference 
in the bias-corrected TF deviation score between two aggregate single-cell 
populations. Significance was tested by using a two-tailed Student's t-test. The 
variability of a TF motif across single cells was determined by computing the s.d. of 
the z-scores across the cells8,11. The expected value of this metric was 1 if the motif 
was no more variable than the background peak sets for that motif.

Modification of T-ATAC-seq for additional RNA targets. For method 
development and RT primer troubleshooting, the T-ATAC-seq protocol could be 
performed on 1,000 cells in microcentrifuge tubes, with each reaction performed 
in 1,000 ×​ volume. Following lysis, transposition and transposase release, RNA 
could be reverse-transcribed and subjected to PCR amplification to check RNA 
quality and quantity for a chosen primer set.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary.

Code availability. All custom code used in this work is available upon request.

Data availability. All ensemble and single-cell sequencing data are available 
through the Gene Expression Omnibus (GEO) under accession GSE107817. 
Two replicates of the ensemble ATAC-seq data for naive, TH17 and Treg cells were 
previously published and are available under GEO accession GSE10149861. In 
addition, we have generated an open-access interactive web browser, which enables 
single-cell TCR-seq and ATAC-seq TF deviation exploration (Supplementary 
Fig. 8; http://tcr.buenrostrolab.com). This browser includes all single-cell data 
presented in the study, links to ensemble ATAC-seq profile browsers, and 
processed T-ATAC-seq data matrices.

A WashU browser session with ensemble T cell subtype ATAC-seq 
data is available at http://epigenomegateway.wustl.edu/browser/?genome=​
hg19&session=​N7ew2XJpWK&statusId=​293545209/. A WashU browser session 
with ensemble and aggregated single-cell Jurkat ATAC-seq data is available 
at http://epigenomegateway.wustl.edu/browser/?genome=​hg19&session=​
j5Qd1YqeVz&statusId=​1775458173.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample sizes were chosen to provide sufficient confidence to validate 
methodological conclusions of the applicability of T-ATAC-seq. In general, sample 
sizes for primary cells were calculated  in order to capture at least 20-50 single cells 
per aggregate cell state. The rationale for obtaining 20-50 cells per state is based 
on the ability of aggregated single-cell ATAC-seq data to accurately replicate 
ensemble profiles. This is described in detail in Supplementary Figure 2d-e.  Single 
cells needed to obtain this number were estimated from flow cytometry of healthy 
T cell samples or clinical phenotyping of Sezary samples. Sample sizes for cell line 
data were calculated based on generating matched single-cell data for comparison 
to previously published cell line scATAC-seq data.

2.   Data exclusions

Describe any data exclusions. No inclusion or exclusion criteria were used for human studies. No data were 
excluded from the manuscript.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

All results presented in manuscript were reliably reproduced.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization of human participants was used. The experiments were 
designed to demonstrate the applicability of T-ATAC-seq to human T cell samples 
and not to determine treatment or clinical outcome. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

No blinding was used. The experiments were designed to demonstrate the 
applicability of T-ATAC-seq to human T cell samples and not the effect of 
treatments or perturbations on phenotypes.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

GraphPad Prism (Version 7) was used for statistical tests on ensemble population 
data. For single-cell ATAC-seq analysis, we used chromVAR, which is described in 
the methods, the original publication, and available on GitHub. Further 
downstream analysis of TF matrices obtained from chromVAR was performed 
using MATLAB (Version 8), Cluster 3.0, Java Treeview (Version 3.0), and RStudio 
(Version 1.0.136). Visualization of scATAC-seq data was performed with scHemeR 
(described in the original publication) and viewed on tcr.buenrostrolab.com.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

There are no restrictions on data availability. 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

We used anti-human CD45RA-PERCPCy5.5 (Clone HI100, Lot# B213966, Cat# 
304107, Biolegend), anti-human CD127-Brilliant Violet 510 (Clone A019D5, Lot# 
B197159, Cat# 351331, Biolegend), anti-human CD4-APC-Cy7 (Clone OKT4, Lot# 
B207751, Cat# 317417, Biolegend), anti-human CCR6-PE (Clone G034E3, Lot# 
B203239, Cat# 353409, Biolegend), anti-human CD25-FITC (Clone BC96, Lot# 
B168869, Cat# 302603, Biolegend), anti-human CXCR3-Brilliant Violet 421 (Clone 
G025H7, Lot# B206003, Cat# 353715, Biolegend), anti-human CXCR5-
AlexaFluor647 (Clone RF8B2, Lot# 5302868, Cat# 558113, BD Pharmingen), anti-
human CD26-PE (Clone 2A6, Lot# 4301881, Cat# 12-0269-42, Thermo Fisher), and 
anti-human CD3E-Pacific Blue (Clone UCHT1, Lot# 4341657, Cat# 558117, BD 
Biosciences). All antibodies were validated by the manufacturer in human 
peripheral blood samples, used at a 1:200 dilution, and compared to isotype and 
no staining control samples.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Jurkat cells were obtained from ATCC (Clone E6-1).

b.  Describe the method of cell line authentication used. Jurkat cells were used immediately used for experiments after acquisition from the 
commercial source. Jurkat cells were further authenticated by FACS for CD3 and 
CD4 prior to use in experiments.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

All cell lines tested negative for mycoplasma contamination prior to use in 
experiments.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

None of the cell lines used in this study are listed in this database.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

This study was approved by the Stanford University Administrative Panels on 
Human Subjects in Medical Research, and written informed consent was obtained 
from all participants. Healthy human subjects were male, ages 30-50. Leukemic 
patients were female, ages 40-70.
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Flow Cytometry Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data presentation
For all flow cytometry data, confirm that:

1.  The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

2.  The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of 
identical markers).

3.  All plots are contour plots with outliers or pseudocolor plots.

4.  A numerical value for number of cells or percentage (with statistics) is provided.

    Methodological details
5.   Describe the sample preparation. CD4+ T cells from healthy volunteers or Sezary syndrome patients were 

enriched from peripheral blood using the RosetteSep Human CD4+ T Cell 
Enrichment Cocktail (StemCell Technology). Jurkat cells were obtained 
from ATCC (Clone E6-1) and cultured in RPMI- 1640 Medium with 10% FBS 
and Penicillin/Streptomycin.

6.   Identify the instrument used for data collection. BD FACSAria II

7.   Describe the software used to collect and analyze 
the flow cytometry data.

Flowjo v10

8.   Describe the abundance of the relevant cell 
populations within post-sort fractions.

>95%. Examples of post-sort purities for each population are provided in 
the supplementary information.

9.   Describe the gating strategy used. For single-cell experiments, CD4+ T helper cells were sorted as naive T cells 
(CD4+CD25-CD45RA+), memory T cells (CD4+CD25-CD45RA-), or TH17 
cells (CD4+CD25-CD45RA-CCR6+CXCR5-). For ensemble ATAC-seq 
experiments, CD4+ T helper cells were sorted as naive T cells (CD4+CD25-
CD45RA+), Treg (CD4+CD25+IL7Rlo), TH1 (CD4
+CD25-,IL7Rhi,CD45RA-,CXCR3+,CCR6-), TH2 (CD4
+CD25-,IL7Rhi,CD45RA-,CXCR3-,CCR6-), TH17 (CD4
+CD25-,IL7Rhi,CD45RA-,CXCR3-,CCR6+), and TH1-17 (CD4
+CD25-,IL7Rhi,CD45RA-,CXCR3+,CCR6+). For single-cell Sezary cell 
experiments, cells were sorted as CD4+CD26+ or CD4+CD26- populations. 
Example gating strategies for each population are provided in 
Supplementary Figures 3 and 7.

 Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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