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RNA-protein interactions influence gene expression1, viral assembly2 
and a wide variety of other critical biological processes. Up to 10% 
of the eukaryotic proteome is estimated to bind RNA3, and recent 
work has begun to uncover a web of RNA-protein interactions4–6 that 
can control gene expression through splicing, RNA localization and 
other post-transcriptional processes. Protein interactions with long 
noncoding RNAs also play a role in epigenetic state changes during 
differentiation7, perhaps through ‘scaffolding’ chromatin remodel-
ers8,9. Furthermore, RNA-protein interactions have proven powerful 
tools in synthetic biology, allowing gene expression control through 
post-transcriptional regulation10,11.

A biophysical understanding of the nucleic-acid sequence deter-
minants of RNA-protein interactions lags behind our growing 
realization of their biological importance. Unlike double-stranded 
DNA (dsDNA), RNA substrates demonstrate diverse intramolecular 
interactions—including, mismatched base bulges, stem loops, pseudo 
knots, g-quartets, divalent cation interactions and noncanonical base 
pairs—that determine three-dimensional RNA structure12–15 and set 
the landscape for interactions with RNA-binding proteins (RBPs)16. 
The combinatorial nature of RNA sequence and intramolecular inter-
actions, coupled with the relative paucity of data produced from cur-
rent biophysical methods, has precluded a high-resolution, predictive 
understanding of both the sequence dependence of affinity and the 
resulting evolutionary constraints imposed by these requirements. 
Because the relationship between sequence and binding is often 
opaque, little is understood regarding the evolutionary constraints 

on these RNA structures, making bioinformatic identification of func-
tional RNAs difficult17.

Current methods for investigating the sequence dependence of 
RNA-protein interactions include medium-throughput microfluidic 
methods18 and high-throughput methods coupling affinity-based 
selection with high-throughput DNA sequencing or array hybridi-
zation19, which recently have been used to generate a catalog of RNA 
binding motifs20. Although powerful, selection and sequencing  
methods bias results toward high-activity variants and do not directly 
and quantitatively measure the biophysical parameters that underlie 
biological function21. Recently, methods have been developed to quan-
titatively measure catalysis22,23; however, no such high-throughput  
methods exist for determining binding parameters kon, koff and Kd for 
RNA-protein interactions.

The technological innovations that have propelled the high-
throughput sequencing revolution provide the foundations for mas-
sively parallel, fluorescence-based observations over a large variety 
of nucleic acid structures immobilized on a surface24–27. Recent 
work characterizing DNA-protein interactions27 has demonstrated 
the utility of these instruments for high-throughput binding affin-
ity assays across large DNA sequence space. In this work, we have 
leveraged the Illumina DNA sequencing platform, an instrument 
that integrates solid-phase molecular biology, fluidics and high-
throughput total internal reflection fluorescence imaging for mas-
sively parallel DNA sequencing28, to create a platform for direct, 
ultra-high-throughput measurement of RNA-protein interactions. 
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In addition, we have developed quantitative image analysis tools 
for large-scale analysis of these data, and measure both equilibrium 
binding constants and dissociation kinetics. This approach enables 
quantitative measurement of binding and dissociation of a protein 
to >107 RNA targets generated directly on the flow cell surface, pro-
viding massive biophysical data sets enabling predictive models for 
affinity tuning, decomposition of binding energies between primary 
and secondary structures, and quantitative analysis of evolutionary 
trajectories across sequence space. We apply these methods to the 
coat protein of MS2, a bacteriophage that often infects Escherichia 
coli2,29–33. The MS2 coat protein and RNA hairpin have wide-
spread applications in affinity purification34, RNA imaging35 and  
synthetic biology10,11.

RESULTS
A high-throughput RNA array for quantitative measurements
To generate a library of RNA targets, we first made an Illumina sequenc-
ing library containing an E. coli RNA polymerase (RNAP) initiation-
and-stall sequence and a region coding for diverse sequence variants of 

the MS2 RNA hairpin synthesized using doped oligonucleotides (Fig. 
1a,b, Supplementary Fig. 1 and Supplementary Table 1). To ensure 
multiple measurements of each RNA variant and reduce sequencing 
errors36, we introduced single-molecule barcodes 5′ of the RNAP ini-
tiation sequence. The barcoding strategy serves to identify individual 
molecules within a population by uniquely tagging each molecule 
using a barcode. We then diluted the amplification reaction such that 
~8 × 105 molecules were amplified in the reaction, which created a 
‘bottleneck’ in the population of barcoded molecular variants. This 
procedure allowed for each barcoded molecular species to be present 
at a median of 15 locations per sequencing lane, allowing for multiple 
redundant measurements across the flow cell (Supplementary Fig. 2).  
The sequencing process converted individual molecules within the 
library to ~1-µm diameter clusters of ~1,000 clonal DNA molecules 
on the flow cell surface28 and provided the sequence and position of 
the DNA templates across the two-dimensional (2D) array.

After sequencing, we removed the sequenced DNA strand and 
regenerated dsDNA using DNA polymerase to extend a biotinylated 
primer. We then saturated the flow cell with streptavidin to create a 
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Figure 1  A massively parallel RNA array for quantitative, high-throughput biochemistry. (a) Steps for generating RNA tethered to DNA clusters on a 
high-throughput, DNA sequencing flow cell. (b) Structure of the MS2 coat protein homodimer bound to the 19-nt hairpin RNA (PDB ID: 2BU1)33. 
(c) Images of fluorescently labeled MS2 bound to RNA clusters at increasing concentrations of protein and at time points following perfusion of 
unlabeled MS2 competitor. Below, fitted sum of Gaussians used to assign fluorescence to clusters. Scale bars, 2.5 µm. (d) Fluorescence decay of MS2 
dissociating from clusters containing the consensus (−5C) sequence (t1/2 = 8.39 min). (e) Fit binding curves to clusters labeled in panel c. (f) The 
probability distribution of binding energies from all clusters with labeled variants; mean Kd = 2.57 nM, 36.8 nM and 415 nM for the −5C, −5U and 
−5A variants, respectively. (g) Correlation between binding energies reported in the literature and measured on the RNA array (squares, Carey et al.29; 
circles, Romaniuk et al.32). (Dashed line indicates our affinity measurement cutoff.)
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terminal biotin-streptavidin roadblock on the dsDNA fragments. To 
synthesize RNA, we adapted methods from single-molecule inves-
tigations37 designed to generate a single RNA per DNA template. 
First, we initiated E. coli RNAP holoenzyme in CTP-starved condi-
tions, which allows RNAP to generate 26 bases of RNA (the footprint 
of RNAP) before stalling at the first guanine on the DNA template 
strand. Second, we washed excess RNA polymerase from solution and 
introduced all four nucleotides, allowing RNAP to transcribe the vari-
able region and stall at the biotin-streptavidin roadblock. This proce-
dure results in transcribed RNA tethered to its parent DNA by RNA 
polymerase (Fig. 1a and Supplementary Fig. 3). The resulting RNA 
array contained 1.2 × 107 distinct clonal RNA populations comprising 
1.48 × 105 unique sequences in a single sequencing lane.

Quantitative binding and dissociation measurements
To measure binding energies, we flowed MS2 coat protein, fluo-
rescently labeled with SNAP-Surface 549 over the RNA array, and 
imaged bound MS2 protein at equilibrium using total internal 
reflection fluorescence at ten increasing concentrations. After the 
final measurement, we perfused 1.8 µM unlabeled MS2 protein and 
recorded the fluorescence decay caused by dissociation (Fig. 1c and 
Supplementary Movie 1). The high concentration of unlabeled MS2 
protein blocks other binding sites on the array, preventing rebinding 
of fluorescently labeled MS2.

To quantify bound MS2 protein, we developed image analysis tools 
that cross-correlate cluster centers from sequencing data to acquired 
images and fit the observed binding in each cluster to a 2D Gaussian 
(Supplementary Figs. 4 and 5; software is available as Supplementary 
Data). Using this approach, we quantified the fluorescence signal for 
each cluster in 6,240 images representing 120 tiles imaged in two 

fluorescence color channels across 11 equilibrium MS2 concentra-
tions and 15 dissociation time points. Fluorescence signals from single 
clusters fit canonical dissociation (Fig. 1d and Supplementary Fig. 6)  
and binding curves (Fig. 1e,f and Supplementary Fig. 7), yielding 
binding energy estimates in excellent agreement with published mea
surements (R = 0.94, slope = 1.08; Fig. 1g) and in vitro binding assays 
(R = 0.92, slope = 0.76; Supplementary Fig. 8).

We calculated off-rates (koff) for 3,029 sequences and dissocia-
tion constants (Kd) for 129,248 sequences, encompassing 57 single 
(100%), 1,539 double (100%), and 24,181 triple (92.4%) mutants  
(Fig. 2a,b; for data see Supplementary Tables 2 and 3; for error 
estimation and quality control, Supplementary Figs. 9 and 10). To 
investigate how sequence variation in the RNA hairpin affects MS2 
binding, we examined differential binding energies for all single 
mutants compared to the consensus sequence (−∆∆G−5C = 0 kBT). The 
average binding energy change from all possible single-base changes 
at each position reveals a sensitivity to mutation throughout the hair-
pin that complements the effects of mutating individual residues on 
the binding surface of MS2 to alanine38 (Fig. 2c and Supplementary  
Fig. 11). Specifically, we observe high mutation sensitivity at base-
paired positions near the loop and at specific single-stranded posi-
tions, suggesting significant primary sequence and secondary 
structure requirements for RNA recognition.

Affinity partitioned between primary and secondary structure
To comprehensively examine these primary and secondary structure 
effects on binding, we calculated the −∆∆G of all double mutants (Fig. 2d).  
We observed high positive epistasis in a population of ‘compensating 
mutants’, suggesting that these pairs of mutations preserve hairpin struc-
ture and maintain high binding affinities (Fig. 2e). We also observed 
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Figure 2  A quantitative map of MS2 binding across RNA sequence variants. (a) Distribution of observed RNA variants by number of mutations.  
(b) Clusters measured per molecular variant as a function of mutation number. A median of ~11 clusters are observed for sequences with ≥4 mutations. 
Affinities for the consensus (−5C) sequence come from N−5C = 909,385 clusters. Box plots show median and upper/lower quartiles; whiskers show 
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negative epistasis in noncompensating mutants near the base of the 
stem, potentially due to cooperative effects on hairpin destabilization 
in these regions. Reciprocal mapping of positive epistasis signatures  
(≥1 s.d.) allowed de novo reconstruction of the bound hairpin struc-
ture, identifying base-paired, loop and bulge positions (Supplementary  
Fig. 12a), demonstrating the feasibility of reconstructing molecular 
RNA structures from large-scale, sequence-function data.

We modeled the contributions of base specificity (primary struc-
ture) and base-pairing (secondary structure) to binding energy at each 
position in the hairpin with a linear regression model from a set of 121 
training sequences. This model provides two free parameters for each 
unpaired base, accounting for primary sequence changes in the form 
of transitions or transversions. For each pair of interacting bases, the 
model provides a total of six free parameters—one for transition and 
transversion of each base in the pair (four parameters) as well as one 
parameter to account for disruption owing to the loss of base-pairing 
and one parameter representing possible noncanonical base-pairing 
interactions. These parameters were optimized jointly, to identify (by 
regression) the energetic contributions of primary sequence changes 
(i.e., transitions or transversions that occur while holding secondary 
structure constant) and secondary structure changes (i.e., inferred 
energetic consequences of secondary structure disruptions or forma-
tion of noncanonical bases in isolation from primary sequence per-
turbations). To quantify the sensitivity for noncanonical base-pairing 
at positions in the hairpin stem, we trained the model eight separate 
times (once for each possible noncanonical pairing) with one free 
parameter representing the energetic cost of the respective nonca-
nonical pairing. This refitting analysis allowed the model to incorpo-
rate a different energetic penalty for having noncanonical base pairs 
at a specific position instead of the energetic penalty for a full loss of 
base-pairing. In this analysis, G:U base pairs caused substantially less 
disruption to the binding energy than other noncanonical base pairs 
(Fig. 3a), consistent with the formation of a wobble base pair at G:U  
positions that allows partial rescue of the secondary structure12,39. 
Our final model, which incorporated a free parameter for G:U nonca-
nonical base pairs, captured 92% of the variance in binding energy of 
the training set (Supplementary Fig. 12b) and predicted the binding 
energy of second and third mutations for variants with mutations 
in both paired and unpaired positions with correlation coefficients  
R = 0.94 and R = 0.83, respectively (Fig. 3b).

The model-fit parameters allowed quantitative decomposition of pri-
mary and secondary determinants of affinity across the RNA structure 
(Fig. 3c,d). Energetic penalties for disrupting base-pairing increase with 
proximity to the loop, whereas noncanonical G:U base pairs cause sub-
stantially less energetic disruption at the −8:−3 and −11:−1 positions. 
Altering the primary sequence at −10A (bulge) and −4A (loop), resi-
dues that interact with the Lys61 binding pocket on alternate halves of 
the dimer31, confers energetic costs that exceed disrupting the hairpin 
structure at any single base pair. We also observed important roles for the 
−7A and −5C residues, consistent with stacking interactions at these posi-
tions40. Altering the primary sequence on the 5′ side of the hairpin confers 
a greater energetic penalty compared with altering the 3′ side, which we 
speculate results from direct interactions with MS2 on the 5′ side38.

Association rate contributes to changes in binding energies
We sought to quantify how changes in association and dissociation rates 
contribute to measured −∆∆G values for all mutants with measurable 
kinetic data. We calculated the energetic contributions to −∆∆G from 
changes in dissociation rates [ log( / ) log( )]− =k k koff

mutant
off
consensus def

off
mutant∆ ,  

and inferred the contribution from changes in association rates, 
[log( / ) log( )]k k kon

mutant
on
consensus def

on
mutant= ∆ . Because ∆log(koff) + 

∆log(kon) = −∆∆G, we treated these parameters as pseudo-energies. 
Using this decomposition, we examined the fractional contribution 
of change in dissociation rates to −∆∆G across single and double 
mutants (Fig. 4a). At the base of the hairpin, only a small fraction 
of −∆∆G measurements are explained by dissociation rate changes. 
This small effect suggests that mutations at these positions modulate 
association rates, possibly by causing fraying of the hairpin and/or 
allowing competition with alternate RNA structures, thereby reducing 
the per-collision probability of productive binding (Supplementary 
Discussion). This interpretation is reinforced by examining ∆log(koff) 
and ∆log(kon) in this region (Fig. 4b,c). Dissociation rates change 
little whereas inferred association rates remain similar to that of the 
consensus sequence only for structures that maintain base-pairing 
through compensating mutations. Across all measured variants, we 
observe a significant population of structures with −∆∆G driven by 
association rates (Fig. 4d; P < 2.2 × 10−16, Wilcoxon signed rank test, 
µ = 0.5). These results suggest the kinetic drivers of observed affinity 
changes are position-specific and often operate through modulating 
association rates, likely by changing hairpin stability.
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Quantitative analysis of evolutionary landscapes
We sought to understand how biophysical properties shape RNA 
sequence evolution toward higher binding affinity by examining 
the prevalence of epistasis, or differential mutational path probabili-
ties caused by nonadditive affinity gains, in molecular evolution—a 
question of intense debate41,42. Following previous work43,44, we 
reconstructed 1,997 complete sets of mutational paths (tesseracts), 
describing the probability of evolving through permutations of four 
mutations from 1,597 low-affinity to 127 high-affinity hairpins. We 
modeled the probability of mutation, or the traversal from a source to 
a target node, as the effective probability of MS2 binding to the target 
over all sequences within one mutation of the source in the tesseract. 

Mutations can arise in any order, resulting 
in N = 4! = 24 distinct paths through which 
mutations may be sequentially acquired  
(Fig. 5a), with path probabilities defined as 
the product of probabilities for each muta-
tional step. This model allowed us to examine 
how molecular evolution toward higher affin-
ity could proceed in an RNA-protein inter-
action, a question separate from the in vivo 
evolutionary landscape of MS2 sequences 

where the relationship between affinity and cellular fitness, and the 
pleiotropic roles of this sequence in the MS2 genome, define the con-
tours of the fitness landscape.

We examined evolutionary constraint (EAUC), defined as the area 
under the curve of the cumulative probability of rank-ordered paths, 
in each set43 (Fig. 5a). The data from 47,928 mutational paths revealed 
strong constraint in evolution toward higher affinity, with 81% of 
path probability contained within the top 30% of mutational paths 
(Fig. 5b). The observed evolutionary constraint exceeds that expected 
from a nonepistatic landscape accounting for measurement errors 
(null model), or from a model that assumes a random distribution of 
affinities (Fig. 5c). These results indicate that distributions of affinity 
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effects in mutational paths are highly structured, consistent with wide-
spread intramolecular epistasis in evolutionary phase space41,43–45.

The sum of the mutational path probabilities (ESUM) captures the 
probability of reaching a given high-affinity sequence from a given 
low-affinity sequence. We observed a nonuniform distribution of both 
evolutionary probability (ESUM) and constraint (EAUC) from tesser-
acts involving mutations at different residues in the hairpin structure  
(Fig. 5d,e; for data see Supplementary Table 4), implying that bio-
physical properties impose strong, systematic, structure-dependent 
effects on evolutionary trajectories.

By modeling evolutionary sequence preference of ribosomal RNA, 
Rousset et al.46 observed that trajectories transitioning from A:U to G:C  
base pairs preferentially traverse G:U versus A:C intermediates and 
hypothesized this noncanonical base-pairing as a general mechanism 
for maintaining RNA-protein contacts in evolution. Data from 696 
tesseracts containing both G:U and A:C intermediates reveal differential 
preferences for paths traversing G:U intermediates across the hairpin 
stem (Fig. 5f,g), providing evidence that biophysical properties under-
lying the preference for G:U intermediates derive not from universal 
properties of secondary structure, but from the details of the RNA-pro-
tein interaction. With the exception of one position (Supplementary  
Fig. 13), we observed no strong differences between the path probabili-
ties of G:A and U:C intermediates for U:A to G:C transitions, highlight-
ing the contextual dependencies of these path probabilities.

DISCUSSION
Using in situ transcription and intermolecular tethering of RNA to 
DNA, we have converted a high-throughput DNA sequencing flow cell 
into an RNA array for quantitatively measuring both binding kinetics 
and thermodynamics on a large scale. Using this quantitative, deep 
mutational profiling approach, we report, to our knowledge, the larg-
est collection of binding affinities and kinetic constants for an inter
molecular interaction. Using this data set, we addressed long-standing 
biophysical questions, including (i) the relative contributions of primary 
and secondary structure elements to binding energy, (ii) the sequence-
dependent kinetic contributions to observed affinities, (iii) the  
prevalence of evolutionary epistasis and (iv) the context dependence 
of preference for G:U intermediates in secondary structure.

Our predictive model for RNA-protein affinity across thousands  
of point mutations provides a map for quantitative tuning of  
both the association rate and the equilibrium constants of this 
RNA-protein interaction. We anticipate this resource of sequence 
variants will enable affinity tuning of MS2-based RNA sensors ena-
bling new applications in synthetic biology. Additionally, these data 
provide quantification of the effect of primary sequence, second-
ary structure and noncanonical base-pairing, creating a valuable  
framework for understanding the design and evolution of new  
RNA aptamers.

We hypothesize that inferred changes in on-rates are due to desta-
bilization of the RNA hairpin formation or competition with alternate 
secondary structure, reducing the number of productive binding col-
lisions47 (Supplementary Discussion). These observations suggest 
the data provided here may also provide a rich resource for modeling 
the RNA hairpin stability and alternate structure formation. Although 
this is an area of inquiry beyond the focus of this work, the potential 
for formation of alternate structures and the effects of local sequence 
on native folding of RNA are well suited for study using this platform, 
as the RNA transcripts are synthesized by E. coli RNAP and folded co-
transcriptionally, closely approximating synthesis conditions in vivo.

We observe that evolutionary landscapes of RNA-protein inter-
actions are highly constrained, further supporting a major role for 

intramolecular epistasis in shaping evolutionary trajectories and 
providing insight into complexities of both natural and human-
directed evolutionary methods for generating high-affinity ligands. 
Our analysis provides a quantitative mapping of G:U bias in evolu-
tionary intermediates that has been previously observed46. However, 
our observation complicates the simple assumption that G:U bias is 
simply a function of regions of RNA that form secondary structure 
and interact strongly with RNA. By observing a lack of G:U/C:A bias 
at the −9 base pair adjacent to the adenine bulge, we note that this 
preference is dependent on the context and the specifics of the sec-
ondary structure in this region.

We anticipate this RNA-MaP methodology will be a useful addi-
tion to selection- and sequencing-based methods. In addition, the 
technique might provide quantitative information on RNA librar-
ies generated by systematic enrichment of ligands by exponential 
enrichment (SELEX), allowing affinity tuning for the design of 
biological parts. Although SELEX methods often begin with large 
libraries (~1014) and produce a small number of selected molecules, 
our RNA array methodology allows quantitative characterization of 
a much larger library subset (~105), opening the door to a detailed 
understanding of the sequence-specific rules driving acquisition of 
affinity in the selection process. Alternatively, our approach might be 
coupled to sequenced in vivo RNA immunoprecipitation libraries48,49 
and used to directly quantify molecular affinities on RNA generated  
in vitro, providing measurements of interactions in well-defined 
conditions. The multicolor imaging capabilities of the sequencer 
enables measurement of more complex biological interactions such 
as cooperativity between differentially labeled binding partners or 
RNA structure inference through fluorescence resonance energy 
transfer (FRET). In addition, the sequencing platform is capable of 
generating DNA clusters >1 kb50, enabling transcription of long RNAs 
and allowing investigations of long, noncoding RNAs and catalytic 
ribozymes (see Supplementary Discussion for possible limitations).  
In short, we believe future application of RNA-MaP to diverse  
RNA-protein and RNA-RNA interactions promises to enable quanti-
tative prediction and engineering of binding affinities and functional 
RNA molecules, as well as the identification and understanding of 
evolutionary sequence constraints based on underlying biophysical 
parameters.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. SRA: SRX495154.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Library design and construction. To generate a high-density RNA array, we 
designed a custom DNA library containing a barcode, E. coli RNAP promoter, 
RNAP stall sequence, constant region and degenerate MS2 hairpin sequence 
(Supplementary Fig. 1). The reverse complement of the region containing 
the stall sequence, constant region and MS2 hairpin were synthesized by the 
Stanford Protein and Nucleic Acid Facility. Degenerate bases were introduced 
into the MS2 hairpin region using hand-mixed bases containing 88% of the 
consensus base and 4% of each nonconsensus base. This degeneracy ratio was 
chosen to maximize the total number of variants represented on the RNA array 
as well as the fractional representation of triple mutants. The RNAP promoter, 
barcode, and Illumina sequencing primers and adapters were subsequently 
added by PCR.

Library bottlenecking and amplification. The sequencing library was 
then bottlenecked to ensure multiple measurements of each RNA variant 
(Supplementary Fig. 2). To quantify the amount of starting material, we used 
a prequantified, commercially available PhiX library (Illumina) as a concentra-
tion standard. The PhiX library was diluted to 50 pM, then diluted 1:2 seven 
times in 10 mM Tris pH 8 + 0.01% Tween20 to create a dilution series ranging 
from 50 pM to 0.39 pM. For each concentration of diluted PhiX and for the 
assembled MS2 hairpin library, 1 µl of library was added to a qPCR mix con-
taining 1× NEBnext PCR Mix, 1.25 µM oligos C and D, and 0.6× Sybr Green. 
qPCR was carried out for 40 cycles, and the Ct values for each PhiX dilution 
and library sample were obtained. For PhiX, the concentration of each sample 
was plotted against the Ct value and was fit to a line. Using the resulting equa-
tion, we related Ct to concentration and calculated the concentration of the 
MS2 hairpin library. We then diluted the MS2 hairpin library to approximately 
30.6 fM (~9.2 × 105 molecules) in 50 µl of the same PCR mix and amplified 
the library to approximately 30 nM (21 cycles).

Sequencing amplified libraries. Libraries were sequenced on an Illumina 
GAIIx to a cluster density of 1.23 × 107 clusters per lane. The libraries were 
sequenced in two steps using the standard single-end sequencing proto-
col. First, 15 cycles were used to read the barcode, and then 27 cycles were 
used to read the variable hairpin region. Reading the random 15-bp barcode 
first improved sequencing quality (data not shown) due to higher sequence 
diversity of the first 15 cycles of sequencing. Sequencing was done by ELIM 
Biopharmaceuticals (Hayward, CA).

MS2 coat protein purification. The MS2-dlFG mutant30 of the MS2 coat 
protein was cloned into a custom expression vector containing an N-terminal 
FLAG and SNAPtag (NEB) and a C-terminal 6xHis tag (https://benchling.com/
s/oYAOq4). The construct was used to transform BL21(DE3) cells (NEB), and 
starter cultures of transformed cells were grown overnight in a rotator at 37 °C 
in 10 ml Luria-Bertani medium (LB) with 50 µg/ml kanamycin. 500 ml LB with 
50 µg/ml kanamycin was inoculated with 10 ml overnight starter culture and 
grown shaking at 37 °C for 2.5 h. SNAPtag-MS2 expression was induced with 
0.5 mM IPTG for 5 h at 22 °C, and then cells were collected by centrifugation 
at 4,000 r.p.m. for 15 min at 4 °C. Cell pellets were frozen at −20 °C overnight. 
MS2 protein was purified using the Qiagen Ni-NTA Fast Start Kit. To maxi-
mize purity, twice the suggested amount of cell pellet was used, cell lysis was 
extended to 1 h, the flow-through was reapplied to the column five times, and 
the column was washed two times with 8 ml wash buffer. Purified protein was 
dialyzed 1:1,000,000 into 100 mM Ultrapure Tris-HCl, pH 8.0 (Invitrogen), 
150 mM NaCl and 1 mM DTT using Slide-A-Lyzer 7000MWCO dialysis cas-
settes (Thermo). Protein was quantified by A280 absorption on a NanoDrop 
and Coomassie Plus Protein Assay (Thermo). Attempts to purify an MS2-dlFG 
fused to tagRFP in place of the SNAPtag by the same protocol resulted in protein 
aggregation in culture and on the sequencing chip (data not shown).

Labeling MS2 coat protein with SNAPtag substrate. 5 µM purified SNAPtag-
MS2 was labeled with SNAP-Surface 549 fluor (NEB) at 37 °C for 30 min in 
50 mM Tris pH 8.0, 100 mM NaCl, 0.1% Tween 20, 1 mM DTT and 10 µM 
SNAP-Surface 549. Excess SNAP-Surface 549 was removed using Zeba Spin 
Desalting Columns (Thermo) equilibrated with TMK Buffer (100 mM Tris-
HCl pH 8.0, 80 mM KCl, 10 mM MgCl2, 1 mM DTT).

RNA labeling and filter binding assays. RNA variants were obtained from 
IDT and the Stanford Protein and Nucleic Acid Facility. RNAs were diluted 
to 5 µM in 10 µl end labeling reactions of 1× T4 PNK buffer with 10 units 
PNK (NEB) and 5 µCi gamma-ATP. Excess gamma-ATP was removed with 
the Zymo Oligo Clean and Concentrator kit. Approximately 20 pM labeled 
RNA was then incubated with varying concentrations of MS2 ranging from 0 
to 8,100 nM in TMKG buffer (TMK buffer, 10% glycerol, 100 µg/ml BSA) for  
1.75 h at room temperature. The MS2/RNA mixtures were then filtered through 
a nitrocellulose membrane (GE) followed by a positively charged nylon mem-
brane (GE), then Whatman paper on a dot-blot apparatus (Bio-Rad) using 
the house vacuum (Supplementary Fig. 8a). Membranes were allowed to air 
dry before exposure to a phosphor screen for 12–96 h. Phosphor screens were 
scanned on a Typhoon and the signal from each dot was quantified in ImageJ. 
Fraction bound (fbound) was determined for each filtered MS2/RNA mixture 
as the signal on the nitrocellulose (signalnitrocellulose) (which binds protein and 
therefore MS2-RNA complexes) over the total signal on both the nitrocellulose 
and the positively charged nylon (signal+Nylon) (which binds free RNA).

f signal
signal signalbound
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nitrocellulose Nyl
=

+ + oon

The concentration of protein (C) versus fraction bound was fit to a bimolecular 
binding curve in MATLAB for each of three replicates to find the Kd.  
(Fit parameters fmax = maximal fraction bound and fmax = minimum  
fraction bound.)
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Modifications to the Illumina genome analyzer IIx (GAIIx). To improve 
the optics and allow for equilibrium measurements on an Illumina sequencer, 
we modified the sequencer in several ways. First, we exchanged the stand-
ard Illumina fluorescence filter to a filter optimized for SNAP-Surface 549 
fluorescence emission (Semrock FF01-562/40-25). Second, we eliminated 
unwanted wash steps after imaging and during the ‘safe state’ mode by 
changing the default SCS files. C:\Illumina\SCS2.10\DataCollection\bin\
Config\HCMConfig.xml was modified to: <SafeStatePump Solution = ”4”  
AspirationRate = ”250” DispenseRate = ”2500” Volume = ”0” />, and 
C:\Illumina\SCS2.10\DataCollection\bin\Config\ImageCyclePump.xml 
was modified to <ImageCyclePump On = ”false” AutoDispense = ”false”>. 
We also shortened all the fluidics lines of the GAIIx and the associated  
paired-end module.

Generation of the RNA array. All subsequent steps were performed on the 
modified GAIIx using GAIIx software running custom fluidics and imag-
ing scripts. After sequencing, dsDNA clusters on the Illumina flow cell were 
denatured using 0.1 N NaOH. Following denaturing, we observed residual 
fluorescence from the sequencing reaction (Supplementary Fig. 3a,b). 
Therefore, we incorporated an additional cleavage step (100 mM Tris, 125 mM  
NaCl, 100 mM TCEP, 50 mM sodium ascorbate, and 0.05% Tween 20) 
(Supplementary Fig. 3c). Following cleavage, we annealed a 5′ biotinylated 
primer to the 3′ sequencing adaptor and resynthesized dsDNA using Klenow 
DNA polymerase (1 × NEB buffer 2, 250 µM dNTP mix, 0.1 units/µl NEB 
Klenow, 0.01% Tween-20) incubated for 30 min at 37 °C. We then flowed in 
100 nM RNase free streptavidin to bind to the 5′ biotinylated primer and pas-
sivized with a 500 nM biotin wash. To block all potential single-stranded DNA, 
we annealed an unlabeled oligo complementary to the constant stall sequence. 
We then incubated the dsDNA with a transcription initiation mix containing 
sigma saturated RNAP and three nucleotides at 2.5 µM (1× T7A1 reaction 
buffer (20 mM Tris, 20 mM NaCl, 7 mM MgCl2, 0.1 mM EDTA, 0.1% BME,  
0.02 mg/ml BSA, 1.5% glycerol), 2.5 µM each ATP, GTP and UTP, 0.015 mg/ml 
RNAP (Sigma-saturated holoenzyme from Epicentre) and 0.01% Tween-20) 
for 30 min at 37 °C. In this buffer, RNAP initiates onto dsDNA clusters and 
stalls at the first cytosine, generating 26 bases of RNA. Stalled RNAP covers 
the initiation site to inhibit multiple RNAPs from initiating on the same DNA 
molecule. Excess RNAP was washed from solution with 1× T7A1 reaction 
buffer plus 2.5 µM each ATP, GTP and UTP. Finally, 1 mM NTPs (ATP, CTP, 
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GTP and UTP) in 1× T7A1 reaction buffer were added for 30 min at 37 °C to 
allow transcription to proceed. After transcription, RNAP remained stalled 
at the 5′ biotin-streptavidin roadblock, generating a stable RNAP-mediated 
DNA-RNA tether (Fig. 1a).

MS2 binding and dissociation experiments on the RNA array. To assay total 
synthesized RNA, we annealed an Alexa Fluor 647–labeled DNA oligo onto the 
stall sequence that was present in all clusters (Supplementary Figs. 1 and 3).  
Based on cluster fluorescence intensities, we observed an RNA synthesis effi-
ciency of ~30–40%. We also annealed an unlabeled MS2_3′ block oligo to 
the constant region between the hairpin and the RNAP footprint to help pre-
vent alternate secondary structures. Following annealing, we assayed binding 
by introducing SNAP-Surface 549-MS2 (TMK buffer, 100 µg/ml BSA and  
10 µg/ml yeast tRNAs) to the flow cell at 3× increasing concentrations start-
ing at 0.046 nM and ending at 900 nM for a total of ten binding images. For 
each measurement, we waited 1 h to reach equilibrium. Following binding at  
900 nM MS2, we observed dissociation by introducing 1.8 µM unlabeled MS2 
and continually imaging the 120 tiles of the flow cell.

Image processing. Cluster positions, including tile, x position and y posi-
tion were extracted from the FASTQ sequencing data. Cluster positions 
were then cross-correlated with acquired images to define a global x/y off-
set (Supplementary Figs. 4 and 5). Before quantification, saturated pixels 
within the image were masked. After cross-correlation, images were broken 
into smaller sub images (24 × 24 pixels) and fit to a sum of overlapping 2D 
Gaussians (defined by the sequencing cluster centers) using linear least squares 
(Supplementary Figs. 4 and 5):
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This fit was repeated for all images (120 tiles per GAIIx sequencing lane), 
which included all 120 RNA images (Alexa Fluor 647) and 26 × 120 binding 
and dissociation images (SNAP-Surface 549). Following single cluster fits to 
2D Gaussians, we grouped data by cluster ID and calculated the fit fluorescence 
using the fit parameters Ak= amplitude and σk= standard deviation with the 
following equation:

F Aint k k= 2 2p s
  

Barcode handling and sequence alignment. A random barcode and bot-
tlenecking approach was used to reduce sequencing and measurement error 
by ensuring replicate clusters. We first removed barcodes with homopolymers 
of 15 consecutive bases or barcodes that were represented three times or  
less; 495,822 of clusters were removed (4.29%). To reduce sequencing errors, 
we grouped sequences by identical barcodes. Hairpin variants that were 
represented twice or less among a set of identical barcodes were assigned as 
sequencing errors and removed from further analysis; 990,053 clusters were 
removed (8.58%). Using these stringent cutoffs, 10,059,446 clusters remained. 
Remaining clusters were aligned to the MS2 consensus sequence using a 
Smith-Waterman algorithm.

Fitting Kd and koff. Data were normalized to the total RNA per cluster, quanti-
fied using the Alexa Fluor 647 labeled DNA oligo. Outlier data were estimated 
using median absolute deviation (MAD) and removed. Integrated fluorescence 
values from the each cluster were fit to a binding curve with the equation:

F F
K
x

Fobs
max

d min=
+

+
1

where Fobs = observed fluorescence, Fmax = fit maximum fluorescence, Fmin =  
fit minimum fluorescence, Kd = affinity constant and x = concentration of 
MS2. Outliers were estimated using MAD and removed. Reported binding 
energy values are the median Gibbs free energy (kcal/mol). Measurement error 
was estimated using bootstrapped 95% confidence intervals on this median. 

For dissociation calculations, we found that the consensus sequence (–5C vari-
ant) had 9% residual fluorescence (standard deviation of 4%) after ~90 min of 
dissociation, which likely attributed to nonspecific fluorescence. Therefore, 
the maximum and minimum intensities of each cluster were normalized by 
bound MS2 at 900 nM and remaining fluorescence after ~90 min of dissocia-
tion. Clusters of identical sequence were merged using image time stamps and 
median fluorescence values per variant at each time point. Each variant and 
their associated merged values were used to fit dissociation constants using 
the following equation:

F F k x Fobs ns off ns= − − +( )exp( )1

where Fobs = observed fluorescence, Fns = nonspecific background fluores-
cence, koff = dissociation rate and x = dissociation time.

Differential affinity calculations and quality filtering. For each unique 
sequence (N = 148,184), we computed the −∆∆G of binding relative to the 
consensus sequence, and quality-filtered our data for analysis by removing 
sequences for which the computed range of the 95% confidence interval 
for −∆∆G was greater than 1 kBT. In addition, we retained sequences if the 
upper bound of the 95% confidence interval lies below −∆G < 13.12236 kBT 
(Kd > 2,000 nM), thresholding their binding affinity to Kd = 2,000 nM. As a 
result, retained sequences either bind the MS2 coat protein at Kd < 2,000 nM, 
with affinity estimates within 0.5 kBT (on average) of the upper/lower bound 
affinities, or bind at Kd ≥ 2,000 nM. To determine fit quality, we calculated 
mean square error (MSE) of each single cluster fit and determined the median 
MSE for each variant and removed variants (N = 194) with an MSE > 0.025 
(Supplementary Fig. 7). Finally, we removed a set of variants (N = 184) with 
−∆∆G > 0.9 kBT, comprising a population of clusters with nonconverging fits, 
yielding a final set of quality-approved variants of N = 129,248. Binding ener-
gies and quality metrics for approved variants are provided in Supplementary 
Table 2. Similarly, we quality-filtered our kinetics data approving 3,029 vari-
ants with vetted binding energies and qualities (above), Kd < 500 nM and 
half-lives (t1/2) > 0.5 min. Measured dissociation and inferred association rates 
are provided in Supplementary Table 3.

Analysis of intramolecular epistasis. We calculated intramolecular epistasis 
scores (εab) for the complete set of double mutants following a simple additive 
model of neutrality:

eab a b abG G G= + −( )∆ ∆ ∆

Whereby ∆Gab, ∆Ga and ∆Gb represent the measured Gibbs free energy of 
binding MS2 for the variant harboring mutations a and b, the variant with 
the point mutation a, and the variant with the b point mutation, respectively. 
As such, positive εab values reflect sequences in which the composite muta-
tions (a, b) yield higher binding affinity than would be expected from their 
individual effects.

To derive the secondary structure of the MS2 RNA hairpin solely from 
affinity measurements, we calculated the mean epistasis score per i,j posi-
tion pair (Fig. 2e and Supplementary Fig. 12a). Selecting pairs of positions 
with mean epistasis scores ≥1 s.d. from zero and with the reciprocal, highest 
mean epistasis scores accurately identified the structure of base pairs in the 
RNA hairpin.

Modeling affinity effects of mutation. To infer the energetic contribution 
of primary and secondary structure defects conferred by mutations at each 
position of the MS2 hairpin, we first classified positions as base-paired or 
single-stranded on the basis of epistasis signatures (described above). For each 
position i, we generated a binary (1,0) matrix detailing the presence or absence 
of specific primary and secondary structure defects (columns) from variants 
(rows) harboring mutations exclusively at relevant i or i,j positions, for single-
stranded or base-paired positions, respectively (Supplementary Fig. 12b).  
Specifically, we incorporated annotation terms for (i) transitions and  
(ii) transversions at i, for (iii) transitions and (iv) transversions at j, as well as 
for (v) an individual noncanonical base-pair at i,j, and (vi) base-pair disruption 
as defined by a mismatched base pair (not canonical, and not noncanonical)  
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at i,j. With the exception of annotation terms for transitions and transversions  
at i, all terms were set to zero for positions in single-stranded regions. In addition,  
for each position, an entry for the consensus (unmutated) sequence was 
included in which all annotation terms were set to zero. As such, the com-
plete matrix (for all positions) included data from 121 input variants with ≤2 
mutations (M0 = 1, M1 = 57, M2 = 63).

For each position i, we modeled the −∆∆G of binding (relative to the con-
sensus) of the annotated variants with a linear regression on the annotation 
terms to derive the energetic contribution of each primary and secondary 
structure defect (per position):

− = ⋅ + ⋅ + ⋅ +∆∆G i i ji i transition i transversion i j transitionw w w1 2 3
, ww

w w

i j transversion

i j non canonical i j disru

j

i j i j

,

, ,, ,

4

5 6

⋅

+ ⋅ + ⋅− ppt

To predict the ∆G of binding of distant, untrained sequences, we selected 
double (M2 = 720) and triple (M3 = 14,723) mutants that combine mutations 
in base-paired and unpaired positions. This criterion was implemented to 
reduce cooperative effects from mutations in adjacent base pairs, a struc-
tural feature not captured by the model. We predicted the binding energy 
(∆G) of the selected sequences through two approaches. In the first (ab initio) 
approach, we predicted the ∆∆G by compiling the predicted, conferred effect 
of the specific primary and secondary defects on the ∆G of the consensus RNA 
hairpin. In a second (mutation impact) approach, we estimated the ∆∆G result-
ing from primary and secondary structure defects conferred by additional 
mutations based on the ∆G of sequences harboring the complementary set 
of mutations. For example, to predict the ∆Gab of binding of double mutant 
ab, we predicted the ∆∆Gb,a introduced by b on the ∆Ga of binding of a, and 
the ∆∆Ga,b introduced by a on ∆Gb. We then estimated the ∆Gab as the mean 
of ∆Ga + ∆∆Gb,a and ∆Gb + ∆∆Ga,b. For both approaches, the predicted ∆Gs 
were floored for Kd ≥ 2,000 nM.

We evaluated the accuracy of the predicted ∆G for double (M2 = 180) and 
triple (M3 = 933) mutants with Kd < 2,000 nM. The ab initio approach pre-
dicted the ∆G of doubles and triples with R2 = 0.91 and R3 = 0.81, whereas the 
mutation impact provides improved predictions at R2 = 0.94 and R3 = 0.83,  
respectively. Predictions from the mutation impact approach are shown  
in Figure 3b.

Analysis of evolutionary paths. To examine the probability of evolution along 
distinct mutational paths, we first generated a graph connecting individual 
hairpin sequences within one mutation of each other, yielding a mutation 
graph with 104,395 hairpin sequences (nodes) connected through 620,100 
single-point mutations (edges). We scanned this graph for pairs of low- and 
high-affinity sequences separated by four mutations for which binding ener-
gies of all intermediates were measured (i.e., sequences containing all subsets 
of the four mutations separating the low- and high-affinity sequences). We 
required high-affinity variants with −∆∆G ≥ −1 and low-affinity variants with 
−∆∆G ≥ −6.5, thus allowing a broad range of affinity gains between low- and 
high-affinity variants, as well as a broad range of sequences.

The data from the mutation graph allowed us to reconstruct the complete 
sets of mutational paths for 1,997 pairs of low- and high-affinity sequences, 
allowing us to examine the relative probabilities of 47,928 mutational trajec-
tories describing the serial acquisition of four mutations. Each complete set 
contains N = 24 (4!) mutational paths, which can be mathematically arranged 
as tesseracts (Fig. 5b). We defined the probability of mutating from variant ø 
to variant a within each tesseract (Mø→a) to be the binding energy of a divided 
by the sum of the binding energies of all sequences within one mutation from 

ø as well as the binding energy of ø (effectively, the probability of binding a 
versus ø and all sequences in the tesseract within one mutation of ø). Therefore, 
because there are four independent mutations (a, b, c, d) separating a low-
affinity variant (ø) from a high-affinity variant (abcd), each of which can be 
acquired first, the probability of Mø→a can be calculated as:

M e
e

a
Ga k T

Gi k T
i a b c d

f
f

→
−

−
=

=
∑

∆∆

∆∆

/

/
{ , , , , }

B

B

We define a mutational path as the serial acquisition of mutations in a  
specific order, and the serial acquisition of mutations in any order as a  
mutational trajectory. Therefore, the probability of traversing a mutational 
path (Pø→a→ab→abc→abcd) is given by the product of the individual mutation 
probabilities (i.e., Mø→a, Ma→ab, Mab→abc, Mabc→abcd):

P M M M Ma ab abc abcd a a ab ab abc abc abcdf f→ → → → → → → →= * * *

and the probability of realization (ESUM) of a mutational trajectory (Tø→abcd) 
is given by the sum of the probabilities of all mutational paths linking ø and 
abcd. Because our model incorporates the probability of not mutating at each 
node, the probabilities of mutational trajectories do not equal 1. Therefore, 
we normalized the mutational path probabilities by ESUM for the evolutionary 
constraint analyses.

Following Weinreich et al.43, we examined constraint in the accessibility of 
distinct evolutionary paths by modeling the cumulative (normalized) prob-
ability of ranked mutational paths. We extended these approaches by calcu-
lating the AUC of the cumulative probability curve to capture constraint as a 
single metric. This metric of evolutionary constraint (EAUC) was tightly cor-
related with entropy in the mutational path probabilities within each tesseract 
(Spearman’s ρ = 0.995). Evolutionary probability and constraint metrics are 
reported in Supplementary Table 4.

Null and random models of evolutionary constraint. The null model of 
evolutionary constraint is that the differences in mutational path probabilities 
arise solely from measurement error. We generated 100 bootstrapped null 
models for each tesseract by (i) randomly selecting a mutational path within 
the tesseract to obtain a reference ∆G for each Hamming distance from the 
starting (low-affinity) and ending (high-affinity) sequences and (ii) randomly 
selecting an affinity for each variant at each Hamming distance within the 
95% confidence interval of the reference ∆G for that Hamming distance.  
We generated 100 null models for each observed tesseract (N = 1,997), result-
ing in 199,700 null models. We calculated the significance of observed evo-
lutionary constraint (EAUC) scores from the distribution of null model scores 
and corrected for multiple hypothesis testing (Benjamini-Hochberg). 1,991 
(99.7%) of the observed tesseracts are significantly (P < 0.01) constrained 
compared to the null model (Fig. 5c).

The random model of evolutionary constraint is that the differences in 
mutational path probabilities arise solely from random distribution of muta-
tional path probabilities (and therefore binding energies) within tesseracts. 
We generated 199,700 random models by arbitrarily assigning observed bind-
ing energies to variants within each model and calculating evolutionary con-
straint (EAUC). As a comparison, we calculated the significance of observed 
evolutionary constraint (EAUC) scores from the distribution of random model 
scores, correcting for multiple hypothesis testing (Benjamini-Hochberg).  
1,085 (54.3%) of the observed tesseracts are significantly constrained at  
P < 0.01 in the random model (Fig. 5c).
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